We theoretically study the photoelectron momentum distributions from multiphoton ionization of a model lithium atom over a range of laser wavelengths from 500 nm to 700 nm by numerically solving the time-dependent Sch...We theoretically study the photoelectron momentum distributions from multiphoton ionization of a model lithium atom over a range of laser wavelengths from 500 nm to 700 nm by numerically solving the time-dependent Schr ¨odinger equation. The photoelectron momentum distributions display many ring-like patterns for the three-photon ionization, which vary dramatically with the change of the laser wavelength. We show that the wavelength-dependent photoelectron energy spectrum can be used to effectively identify the resonant and nonresonant ionization pathways. We also find an abnormal ellipticity dependence of the electron yield for the(2+1) resonance-enhanced ionization via the 4d intermediate state, which is relevant to the two-photon excitation probability from the ground state to the 4d state.展开更多
Using the numerical solution of the time-dependent SchrSdinger equation of a one-dimensional model atom in a two-colour laser field, we have investigated the effects of the potential models on coherent control of atom...Using the numerical solution of the time-dependent SchrSdinger equation of a one-dimensional model atom in a two-colour laser field, we have investigated the effects of the potential models on coherent control of atomic multiphoton ionization. It is found that the photoelectron spectra are obviously different for the long-range (Coulomb-like) and short-range (with no excited bound states) potential model atoms, which are produced by two-colour coherent control of atomic multiphoton ionization in a few laser cycles. Our results indicate that two-colour coherent control of atomic multiphoton ionization can be observed in simulations, depending on the choice of the model potentials.展开更多
This paper studies the multiphoton ionization of the hydrogen atom exposed to the linearly or circularly polarized laser pulses by solving the time-dependent SchrSdinger equation. It finds that the ratio of the ioniza...This paper studies the multiphoton ionization of the hydrogen atom exposed to the linearly or circularly polarized laser pulses by solving the time-dependent SchrSdinger equation. It finds that the ratio of the ionization probabilities by linearly and circularly polarized laser pulses varies with the numbers of absorbing photons. With the same laser intensity, the circularly polarized laser pulse favors to ionize the atom with more ease than the linearly polarized laser pulse if only two or three photons are necessary to be absorbed. For the higher order multiphoton ionization, the linearly polarized laser pulse has the advantage over circularly polarized laser pulse to ionize the atom.展开更多
Multiply charged ions of Ar and NO were observed in MPI experiment Of NO/Ar with TOF-MS. A delayable pulsed acceleration field wn applied tO investigate the effect of the photoelectrons on the formation of the multi...Multiply charged ions of Ar and NO were observed in MPI experiment Of NO/Ar with TOF-MS. A delayable pulsed acceleration field wn applied tO investigate the effect of the photoelectrons on the formation of the multiply charged ions. The multiply charged ions were suggested to be produced by photoelectron impact ionization, in the region bentween the extractor grid and the repeller plate, step by step, from neutral species and lower charged ions. The 50-60ns of FWHM of the ion peaks implies that the pulse width of the photoelectrons should be shorter considering the broadening effect during the ionization process.展开更多
We study the multiphoton ionization of potassium atoms in 800 nm and 400 nm femtosecond laser fields.In the 800 nm laser field,the potassium atom absorbs three photons and emits one electron via one photon resonance w...We study the multiphoton ionization of potassium atoms in 800 nm and 400 nm femtosecond laser fields.In the 800 nm laser field,the potassium atom absorbs three photons and emits one electron via one photon resonance with the 4p intermediate state with the help of the ac-Stark shift.The resonance feature is clearly shown as an Autler-Townes(AT) splitting and is mapped out in the electron kinetic energy spectrum.In a 400 nm laser field,although one photon resonance is possible with the 5p state,no splitting is observed.The different transition amplitudes between 4s-4p and 4s-5p explain the observed results.Due to the AT effect,an unexpected peak in the photoelectron energy spectrum that violates the dipole transition rule is observed.A preliminary explanation involving the spin-orbit interaction in the p state is given to account for this component.The observed ATsplitting in the electron kinetic energy distribution can be used as an effective method to calibrate the intensity of a laser field.展开更多
We study the ionization probabilities of atoms by a short laser pulse with three different theoretical methods, i.e., the numerical solution of the time-dependent SchrSdinger equation (TDSE), the Perelomov-Popov Ter...We study the ionization probabilities of atoms by a short laser pulse with three different theoretical methods, i.e., the numerical solution of the time-dependent SchrSdinger equation (TDSE), the Perelomov-Popov Terent'ev (PPT) theory, and the Ammosov-Delone-Krainov (ADK) theory. Our results show that laser intensity dependent ionization probabilities of several atoms (i.e., H, He, and Ne) obtained from the PPT theory accord quite well with the TDSE results both in the multiphoton and tunneling ionization regimes, while the ADK results fit well to the TDSE data only in the tunneling ionization regime. Our calculations also show that laser intensity dependent ionization probabilities of a H atom at three different laser wavelengths of 600 nm, 800 nm, and 1200 nm obtained from the PPT theory are also in good agreement with those from the TDSE, while the ADK theory fails to give the wavelength dependence of ionization probability. Only when the laser wavelength is long enough, will the results of ADK be close to those of TDSE.展开更多
The resonance-enhanced multiphoton ionization (REMPI) spectrum of NO has been obtained in the range of 420 - 480 nm with a Nd:YAG pumped optical parametric generator and amplifier. The spectral lines can be attributed...The resonance-enhanced multiphoton ionization (REMPI) spectrum of NO has been obtained in the range of 420 - 480 nm with a Nd:YAG pumped optical parametric generator and amplifier. The spectral lines can be attributed to NO X2II(v=0,1)-A2(v' = 0,1) transitions. In this wavelength range, NO molecules are ionized via the resonant intermediate state A2E+ and by a (2 + 2) REMPI process. The dependence of ion signals on laser intensity and gas pressure is discussed. The variation of the ionization signal versus laser intensity is near quartic. This is in good agreement with theory.展开更多
This paper studies the multiphoton resonant ionization by two-colour laser pulses in the hydrogen atom by solving the time-dependent Schroedinger equation. By fixing the parameters of fundamental laser field and scann...This paper studies the multiphoton resonant ionization by two-colour laser pulses in the hydrogen atom by solving the time-dependent Schroedinger equation. By fixing the parameters of fundamental laser field and scanning the frequency of second laser field, it finds that the ionization probability shows several resonance peaks and is also much larger than the linear superposition of probabilities by applying two lasers separately. The enhancement of the ionization happens when the system is resonantly pumped to the excited states by absorbing two or more colour photons non-sequentially.展开更多
By numerically solving the three-dimensional time-dependent Schrödinger equation,we have investigated multiphoton ionization of hydrogen atom in the two-color circularly polarized(TCCP)laser fields consisting of ...By numerically solving the three-dimensional time-dependent Schrödinger equation,we have investigated multiphoton ionization of hydrogen atom in the two-color circularly polarized(TCCP)laser fields consisting of a strong 400 nm and a much weaker 800 nm pulses.Due to the presence of perturbative 800 nm laser pulse,sideband peaks emerge between the above-threshold ionization rings in the photoelectron momentum distributions.Our numerical results show that the sideband peaks exhibit one-lobe structure in the co-rotating TCCP laser fields,while it displays the three-lobe structure in the counter-rotating TCCP laser fields.Moreover,the photoelectron yield of sidebands in the co-rotating TCCP fields is much higher than those of the counter-rotating TCCP fields.These phenomena could be well explained from the perspective of the photon-absorption channels via the selection rules.Interestingly,an obvious phase shift between the sidebands of different orders from the co-rotating and counter-rotating TCCP fields is observed.This shift indicates the helicity-dependent time delay in the one-photon continuum-continuum transition process.展开更多
This paper reports that the (2+1) resonance enhanced multi-photon ionization spectra of SH radical in external fields are simulated using the split-operator scheme of time-dependent wave-packet method. Two ionic st...This paper reports that the (2+1) resonance enhanced multi-photon ionization spectra of SH radical in external fields are simulated using the split-operator scheme of time-dependent wave-packet method. Two ionic states, i.e. a1△ and b1∑+, are involved in the simulation. It gives the simulated photoelectron spectra, the population in each electronic state, as well as the projection of the wave-packet in each electronic state on different vibrational states. These results show that the so-called four-state model can represent the experimental results well.展开更多
We present the recent new developments of time-dependent Schrödinger equation and time-dependent density-functional theory for accurate and efficient treatment of the electronic structure and time-dependent quant...We present the recent new developments of time-dependent Schrödinger equation and time-dependent density-functional theory for accurate and efficient treatment of the electronic structure and time-dependent quantum dynamics of many-electron atomic and molecular systems in intense laser fields.We extend time-dependent generalized pseudospectral(TDGPS)numerical method developed for time-dependent wave equations in multielectron systems.The TDGPS method allows us to obtain highly accurate time-dependent wave functions with the use of only a modest number of spatial grid point for complex quantum dynamical calculations.The usefulness of these procedures is illustrated by a few case studies of atomic and molecular processes of current interests in intense laser fields,including multiphoton ionization,above-threshold ionization,high-order harmonic generation,attosecond pulse generation,and quantum dynamical processes related to multielectron effects.We conclude this paper with some open questions and perspectives of multiphoton quantum dynamics of many-electron atomic and molecular systems in intense laser fields.展开更多
The wave packet dynamics of I2^- anions is studied by using the time-dependent wave packet method. Two conclusions can be drawn from the calculations. First, the period of the total photoelectron signal oscillating wi...The wave packet dynamics of I2^- anions is studied by using the time-dependent wave packet method. Two conclusions can be drawn from the calculations. First, the period of the total photoelectron signal oscillating with the propagation of delay time is about 750fs. Second, the photoionization of I2^- anions begin at the time 600 fs, and the time needed for the population of the electronic state of I2 neutral molecule to reach the maximum becomes shorter with the increasing delay time.展开更多
The Autler-Townes (AT) splitting in femtosecond photoelectron spectrum of three-level Li2 molecules is theoretically investigated using time-dependent quantum wave packet method. With proper femtosecond laser pulses...The Autler-Townes (AT) splitting in femtosecond photoelectron spectrum of three-level Li2 molecules is theoretically investigated using time-dependent quantum wave packet method. With proper femtosecond laser pulses, three peaks of the AT splitting can be observed in the photoelectron spectrum. The AT splitting stems from rapid Rabi oscillation caused by intense ultrashort laser pluses. The effects of laser parameters on the molecular ionization dynamics are also discussed.展开更多
We investigate the high-order harmonic generation from an atom prepared in a superposition of ground state and highly excited state. When the atom is irradiated by an ultrashort pulse, the cutoff position of the plate...We investigate the high-order harmonic generation from an atom prepared in a superposition of ground state and highly excited state. When the atom is irradiated by an ultrashort pulse, the cutoff position of the plateau in the harmonic spectrum is largely extended compared with the case that the atom is initially in the ground state. The physics of the extension of the high-order harmonic plateau can be interpreted by the spatial structure of the atomic initial wave packet. We can optimize the generation of high-order harmonics by substituting the excited state for a particular coherent superposition of some highly excited states to form a spatially localized excited wave packet.展开更多
A B-spline with the symplectic algorithm method for the solution of time-dependent Schrodinger equations (TDSEs) is introduced. The spatial part of the wavefunction is expanded by B-spline and the time evolution is ...A B-spline with the symplectic algorithm method for the solution of time-dependent Schrodinger equations (TDSEs) is introduced. The spatial part of the wavefunction is expanded by B-spline and the time evolution is given in a symplectic scheme. This method allows us to obtain a highly accurate and stable solution of TDSEs. The effectiveness and efficiency of this method is demonstrated by the high-order harmonic spectra of one-dimensional atoms in comparison with other references.展开更多
We report on the observation of ultracold ground electric-state cesium molecules produced directly in a magneto-optical trap with a good signal-to-noise ratio. These molecules arise from the photoassociation of magnet...We report on the observation of ultracold ground electric-state cesium molecules produced directly in a magneto-optical trap with a good signal-to-noise ratio. These molecules arise from the photoassociation of magneto-optical trap lasers and they are detected by resonantly enhanced multiphoton ionization technology. The production rate of ultracold cesium molecules is up to 4× 10^4 s-1. We measure the characteristic time of the ground electric-state cesium molecules generated in the experiment and investigate the Cs2+ molecular ion intensity as a function of the trapping laser intensity and the ionization pulse laser energy. We conclude that the production of cold cesium molecules may be enhanced by using appropriate experimental parameters, which is useful for future experiments involving the production and trapping of ultracold ground electric-state molecules.展开更多
High-order harmonic generations from a one-dimensional Coulomb potential atom are calculated with the initial state prepared as a coherent superposition between its ground and first excited states. When the energy dif...High-order harmonic generations from a one-dimensional Coulomb potential atom are calculated with the initial state prepared as a coherent superposition between its ground and first excited states. When the energy difference of the two states is small, we can choose proper laser pulse such that the first excited state can be excited only to other bound states instead of being ionized. We show that only the hyper-Raman lines are observable instead of the harmonics. The energy difference of the ground and the first excited state can be deduced from the highest peak of the hyper-Raman lines. We further show that the similar results can be obtained by using a combination of two laser pulses with different frequencies interacting with the atom initially at the ground state.展开更多
The method of quantum wave packet dynamics is used to study the multiphoton ionization of NO molecules via a two-photon Raman coupling and a laser-induced continuum structure (LICS) state in two-colour strong femtos...The method of quantum wave packet dynamics is used to study the multiphoton ionization of NO molecules via a two-photon Raman coupling and a laser-induced continuum structure (LICS) state in two-colour strong femtosecond pulsed laser fields. Time-and energy-resolved photoelectron energy spectra are calculated for describing three photoionization channels. The population transfers through the LICS and the Raman coupling passages are discussed.展开更多
Effect of laser fields on Na2 interaction potentials is studied by calculating the time-resolved photoelectron spectrum (TRPES) with the time-dependent wave-packet method. It is shown that the photoelectron spectrum...Effect of laser fields on Na2 interaction potentials is studied by calculating the time-resolved photoelectron spectrum (TRPES) with the time-dependent wave-packet method. It is shown that the photoelectron spectrum at different delay times reflects the population in different electronic states. We inspect the periodicity of vibrational motion in neutral states, and map the vibrational wave-packet propagation in corresponding internuclear coordinate.展开更多
The mass spectra of cluster ions (NH3)nH2=with n<4 were measured for the first time using a MPI mass spectrometer. The structures of the cluster ions NH5+ and (NH3)2H2+ were calculated using GAUSSIAN-94 package, an...The mass spectra of cluster ions (NH3)nH2=with n<4 were measured for the first time using a MPI mass spectrometer. The structures of the cluster ions NH5+ and (NH3)2H2+ were calculated using GAUSSIAN-94 package, and stable structures for both of them were found.展开更多
基金supported by National Key Research and Development Program of China (Grant No. 2019YFA0308300)the National Natural Science Foundation of China (Grant Nos. 12021004 and 61475055)。
文摘We theoretically study the photoelectron momentum distributions from multiphoton ionization of a model lithium atom over a range of laser wavelengths from 500 nm to 700 nm by numerically solving the time-dependent Schr ¨odinger equation. The photoelectron momentum distributions display many ring-like patterns for the three-photon ionization, which vary dramatically with the change of the laser wavelength. We show that the wavelength-dependent photoelectron energy spectrum can be used to effectively identify the resonant and nonresonant ionization pathways. We also find an abnormal ellipticity dependence of the electron yield for the(2+1) resonance-enhanced ionization via the 4d intermediate state, which is relevant to the two-photon excitation probability from the ground state to the 4d state.
基金Project supported by the National Natural Science Foundation of China (Grant No 10674112) and the Young Teachers Foundation of Northwest Normal University (Grant No NWNU-QN-04-25).
文摘Using the numerical solution of the time-dependent SchrSdinger equation of a one-dimensional model atom in a two-colour laser field, we have investigated the effects of the potential models on coherent control of atomic multiphoton ionization. It is found that the photoelectron spectra are obviously different for the long-range (Coulomb-like) and short-range (with no excited bound states) potential model atoms, which are produced by two-colour coherent control of atomic multiphoton ionization in a few laser cycles. Our results indicate that two-colour coherent control of atomic multiphoton ionization can be observed in simulations, depending on the choice of the model potentials.
基金supports by the Beijing Key Laboratory for Nano-Photonics and Nano-Structure
文摘This paper studies the multiphoton ionization of the hydrogen atom exposed to the linearly or circularly polarized laser pulses by solving the time-dependent SchrSdinger equation. It finds that the ratio of the ionization probabilities by linearly and circularly polarized laser pulses varies with the numbers of absorbing photons. With the same laser intensity, the circularly polarized laser pulse favors to ionize the atom with more ease than the linearly polarized laser pulse if only two or three photons are necessary to be absorbed. For the higher order multiphoton ionization, the linearly polarized laser pulse has the advantage over circularly polarized laser pulse to ionize the atom.
文摘Multiply charged ions of Ar and NO were observed in MPI experiment Of NO/Ar with TOF-MS. A delayable pulsed acceleration field wn applied tO investigate the effect of the photoelectrons on the formation of the multiply charged ions. The multiply charged ions were suggested to be produced by photoelectron impact ionization, in the region bentween the extractor grid and the repeller plate, step by step, from neutral species and lower charged ions. The 50-60ns of FWHM of the ion peaks implies that the pulse width of the photoelectrons should be shorter considering the broadening effect during the ionization process.
基金Supported by the National Key R&D Program of China (Grant No.2019YFA0307701)the National Natural Science Foundation of China (Grant Nos.91850114,11774131,12074143,11704148,11704147,and 11904120)+1 种基金the Science Challenge Project (Grant No.TZ2018005)the finical support of the starting grant from Jilin University。
文摘We study the multiphoton ionization of potassium atoms in 800 nm and 400 nm femtosecond laser fields.In the 800 nm laser field,the potassium atom absorbs three photons and emits one electron via one photon resonance with the 4p intermediate state with the help of the ac-Stark shift.The resonance feature is clearly shown as an Autler-Townes(AT) splitting and is mapped out in the electron kinetic energy spectrum.In a 400 nm laser field,although one photon resonance is possible with the 5p state,no splitting is observed.The different transition amplitudes between 4s-4p and 4s-5p explain the observed results.Due to the AT effect,an unexpected peak in the photoelectron energy spectrum that violates the dipole transition rule is observed.A preliminary explanation involving the spin-orbit interaction in the p state is given to account for this component.The observed ATsplitting in the electron kinetic energy distribution can be used as an effective method to calibrate the intensity of a laser field.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11044007,11164025,and 11064013)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant Nos.20096203110001 and 20116203120001)the Foundation of Northwest Normal University,China (Grant No. NWNU-KJCXGC-03-62)
文摘We study the ionization probabilities of atoms by a short laser pulse with three different theoretical methods, i.e., the numerical solution of the time-dependent SchrSdinger equation (TDSE), the Perelomov-Popov Terent'ev (PPT) theory, and the Ammosov-Delone-Krainov (ADK) theory. Our results show that laser intensity dependent ionization probabilities of several atoms (i.e., H, He, and Ne) obtained from the PPT theory accord quite well with the TDSE results both in the multiphoton and tunneling ionization regimes, while the ADK results fit well to the TDSE data only in the tunneling ionization regime. Our calculations also show that laser intensity dependent ionization probabilities of a H atom at three different laser wavelengths of 600 nm, 800 nm, and 1200 nm obtained from the PPT theory are also in good agreement with those from the TDSE, while the ADK theory fails to give the wavelength dependence of ionization probability. Only when the laser wavelength is long enough, will the results of ADK be close to those of TDSE.
基金This work was supported by the Natural Science Foundation of Hebei Province under Grant No. 102090. L. Zhang's e-mail address is laser@mail.hbu.edu.cn.
文摘The resonance-enhanced multiphoton ionization (REMPI) spectrum of NO has been obtained in the range of 420 - 480 nm with a Nd:YAG pumped optical parametric generator and amplifier. The spectral lines can be attributed to NO X2II(v=0,1)-A2(v' = 0,1) transitions. In this wavelength range, NO molecules are ionized via the resonant intermediate state A2E+ and by a (2 + 2) REMPI process. The dependence of ion signals on laser intensity and gas pressure is discussed. The variation of the ionization signal versus laser intensity is near quartic. This is in good agreement with theory.
基金supports by the Beijing Key Laboratory for Nano-Photonics and Nano-Structure
文摘This paper studies the multiphoton resonant ionization by two-colour laser pulses in the hydrogen atom by solving the time-dependent Schroedinger equation. By fixing the parameters of fundamental laser field and scanning the frequency of second laser field, it finds that the ionization probability shows several resonance peaks and is also much larger than the linear superposition of probabilities by applying two lasers separately. The enhancement of the ionization happens when the system is resonantly pumped to the excited states by absorbing two or more colour photons non-sequentially.
基金This work was supported by the National Key Research and Development Program of China(Grants No.2019YFA0308300)the National Natural Science Foundation of China(Grant Nos.11874163 and 12021004).
文摘By numerically solving the three-dimensional time-dependent Schrödinger equation,we have investigated multiphoton ionization of hydrogen atom in the two-color circularly polarized(TCCP)laser fields consisting of a strong 400 nm and a much weaker 800 nm pulses.Due to the presence of perturbative 800 nm laser pulse,sideband peaks emerge between the above-threshold ionization rings in the photoelectron momentum distributions.Our numerical results show that the sideband peaks exhibit one-lobe structure in the co-rotating TCCP laser fields,while it displays the three-lobe structure in the counter-rotating TCCP laser fields.Moreover,the photoelectron yield of sidebands in the co-rotating TCCP fields is much higher than those of the counter-rotating TCCP fields.These phenomena could be well explained from the perspective of the photon-absorption channels via the selection rules.Interestingly,an obvious phase shift between the sidebands of different orders from the co-rotating and counter-rotating TCCP fields is observed.This shift indicates the helicity-dependent time delay in the one-photon continuum-continuum transition process.
基金Project supported by the National Natural Science Foundation of China (Grant No 10574083)the Natural Science Foundation of Shandong Province of China (Grant No Y2006A23)Partial financial support from the National Basic Research Program of China (Grant No 2006CB806000)
文摘This paper reports that the (2+1) resonance enhanced multi-photon ionization spectra of SH radical in external fields are simulated using the split-operator scheme of time-dependent wave-packet method. Two ionic states, i.e. a1△ and b1∑+, are involved in the simulation. It gives the simulated photoelectron spectra, the population in each electronic state, as well as the projection of the wave-packet in each electronic state on different vibrational states. These results show that the so-called four-state model can represent the experimental results well.
基金the National Natural Science Foundation of China(Grant Nos.11674268 and 11764038)the Natural Science Foundation of Guangdong Province,China(Grant No.2020A1515010927)Department of Education of Guangdong Province,China(Grant Nos.2018KCXTD011 and 2019KTSCX037).
文摘We present the recent new developments of time-dependent Schrödinger equation and time-dependent density-functional theory for accurate and efficient treatment of the electronic structure and time-dependent quantum dynamics of many-electron atomic and molecular systems in intense laser fields.We extend time-dependent generalized pseudospectral(TDGPS)numerical method developed for time-dependent wave equations in multielectron systems.The TDGPS method allows us to obtain highly accurate time-dependent wave functions with the use of only a modest number of spatial grid point for complex quantum dynamical calculations.The usefulness of these procedures is illustrated by a few case studies of atomic and molecular processes of current interests in intense laser fields,including multiphoton ionization,above-threshold ionization,high-order harmonic generation,attosecond pulse generation,and quantum dynamical processes related to multielectron effects.We conclude this paper with some open questions and perspectives of multiphoton quantum dynamics of many-electron atomic and molecular systems in intense laser fields.
基金Supported by the National Natural Science Foundation of China under Grant No 10575017. The code used in our calculation is provided by Professor Ke-Li Han and we appreciate his help and kind advice.
文摘The wave packet dynamics of I2^- anions is studied by using the time-dependent wave packet method. Two conclusions can be drawn from the calculations. First, the period of the total photoelectron signal oscillating with the propagation of delay time is about 750fs. Second, the photoionization of I2^- anions begin at the time 600 fs, and the time needed for the population of the electronic state of I2 neutral molecule to reach the maximum becomes shorter with the increasing delay time.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10374012 and 10674022.
文摘The Autler-Townes (AT) splitting in femtosecond photoelectron spectrum of three-level Li2 molecules is theoretically investigated using time-dependent quantum wave packet method. With proper femtosecond laser pulses, three peaks of the AT splitting can be observed in the photoelectron spectrum. The AT splitting stems from rapid Rabi oscillation caused by intense ultrashort laser pluses. The effects of laser parameters on the molecular ionization dynamics are also discussed.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10474028 and 10604021.
文摘We investigate the high-order harmonic generation from an atom prepared in a superposition of ground state and highly excited state. When the atom is irradiated by an ultrashort pulse, the cutoff position of the plateau in the harmonic spectrum is largely extended compared with the case that the atom is initially in the ground state. The physics of the extension of the high-order harmonic plateau can be interpreted by the spatial structure of the atomic initial wave packet. We can optimize the generation of high-order harmonics by substituting the excited state for a particular coherent superposition of some highly excited states to form a spatially localized excited wave packet.
基金Supported by the National Natural Science Foundation of China under Grant No 10374119, and the 0ne-Hundred-Talents Project of Chinese Academy of Science. ACKN0WLEDGMENTS: We gratefully acknowledge Professors Ding Peizhu and Liu Xueshen for their hospitality and help with the symplectic al- gorithm.
文摘A B-spline with the symplectic algorithm method for the solution of time-dependent Schrodinger equations (TDSEs) is introduced. The spatial part of the wavefunction is expanded by B-spline and the time evolution is given in a symplectic scheme. This method allows us to obtain a highly accurate and stable solution of TDSEs. The effectiveness and efficiency of this method is demonstrated by the high-order harmonic spectra of one-dimensional atoms in comparison with other references.
基金supported by the National Key Fundamental Basic Research Program of China (Grant No. 2006CB921603)the Major Program of National Natural Science Foundation of China (Grant No. 10934004)+3 种基金the National Natural Science Foundation of China (Grant Nos. 60978018,60808009,61008012,and 60978001)the New Teacher Fund of the Ministry of Education of China(Grant No. 200801081021)the National Natural Science Foundation of China for Excellent Research Team (Grant No. 60821004)the Natural Science Foundation of Shanxi Province of China (Grant No. 2009011059-2)
文摘We report on the observation of ultracold ground electric-state cesium molecules produced directly in a magneto-optical trap with a good signal-to-noise ratio. These molecules arise from the photoassociation of magneto-optical trap lasers and they are detected by resonantly enhanced multiphoton ionization technology. The production rate of ultracold cesium molecules is up to 4× 10^4 s-1. We measure the characteristic time of the ground electric-state cesium molecules generated in the experiment and investigate the Cs2+ molecular ion intensity as a function of the trapping laser intensity and the ionization pulse laser energy. We conclude that the production of cold cesium molecules may be enhanced by using appropriate experimental parameters, which is useful for future experiments involving the production and trapping of ultracold ground electric-state molecules.
基金Supported by the National Natural Science Foundation of China under Grant No 10474138, the National High-Tech ICF Committee in China, and China Research Association of Atomic and Molecular Data.
文摘High-order harmonic generations from a one-dimensional Coulomb potential atom are calculated with the initial state prepared as a coherent superposition between its ground and first excited states. When the energy difference of the two states is small, we can choose proper laser pulse such that the first excited state can be excited only to other bound states instead of being ionized. We show that only the hyper-Raman lines are observable instead of the harmonics. The energy difference of the ground and the first excited state can be deduced from the highest peak of the hyper-Raman lines. We further show that the similar results can be obtained by using a combination of two laser pulses with different frequencies interacting with the atom initially at the ground state.
基金Supported by the National Natural Science Foundation of China under Grant No 10374012.
文摘The method of quantum wave packet dynamics is used to study the multiphoton ionization of NO molecules via a two-photon Raman coupling and a laser-induced continuum structure (LICS) state in two-colour strong femtosecond pulsed laser fields. Time-and energy-resolved photoelectron energy spectra are calculated for describing three photoionization channels. The population transfers through the LICS and the Raman coupling passages are discussed.
基金Supported by the National Natural Science Foundation of China under Grant No 10575017.
文摘Effect of laser fields on Na2 interaction potentials is studied by calculating the time-resolved photoelectron spectrum (TRPES) with the time-dependent wave-packet method. It is shown that the photoelectron spectrum at different delay times reflects the population in different electronic states. We inspect the periodicity of vibrational motion in neutral states, and map the vibrational wave-packet propagation in corresponding internuclear coordinate.
文摘The mass spectra of cluster ions (NH3)nH2=with n<4 were measured for the first time using a MPI mass spectrometer. The structures of the cluster ions NH5+ and (NH3)2H2+ were calculated using GAUSSIAN-94 package, and stable structures for both of them were found.