期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
基于MCS-SBL算法的配电网故障定位方法 被引量:1
1
作者 周群 刘梓琳 +2 位作者 冷敏瑞 印月 何川 《电力系统及其自动化学报》 CSCD 北大核心 2024年第3期30-38,共9页
配电网拓扑结构复杂,传统方法往往需要大量测点信息且难以实现快速有效的故障定位,本文提出基于少量测点信息的故障定位方法。首先,利用等效原理建立一个欠定的故障节点电压方程;其次,利用多重测量向量模型的贝叶斯压缩感知算法求解方程... 配电网拓扑结构复杂,传统方法往往需要大量测点信息且难以实现快速有效的故障定位,本文提出基于少量测点信息的故障定位方法。首先,利用等效原理建立一个欠定的故障节点电压方程;其次,利用多重测量向量模型的贝叶斯压缩感知算法求解方程,根据重构稀疏电流矩阵的非零元素位置求解故障区域,实现故障定位;最后,在IEEE33节点配电系统上进行仿真实验,结果表明,所提方法仅需要少量测点的故障前后正序电压分量便可有效定位故障,计算速度较快,并且基本不受故障类型、过渡电阻的影响,同时适用于单故障和多重故障的场景,具有较强的抗噪能力。 展开更多
关键词 配电网 故障定位 多重测量向量模型 稀疏电流 压缩感知
下载PDF
压缩感知的多重测量向量模型与算法分析 被引量:13
2
作者 王法松 张林让 周宇 《信号处理》 CSCD 北大核心 2012年第6期785-792,共8页
压缩感知(Compressed Sensing:CS)技术是信号处理领域中数据获取和重构的新方法,其在理论上保证了只要源信号在时域或某种变换域中具有稀疏性,可以以远低于Shannon/Nyquist采样定理的采样率对信号进行采样而不至于引起信息丢失,同时,还... 压缩感知(Compressed Sensing:CS)技术是信号处理领域中数据获取和重构的新方法,其在理论上保证了只要源信号在时域或某种变换域中具有稀疏性,可以以远低于Shannon/Nyquist采样定理的采样率对信号进行采样而不至于引起信息丢失,同时,还可以以高概率重构源信号。CS现有算法大都从单重测量信号中恢复稀疏信号源,即为单重测量向量(SMV)模型。而在实际应用中,存在大量的多重测量向量情形,从多重测量向量中恢复未知的具有相同稀疏结构的联合稀疏信号源的模型称为CS的多重测量向量(MMV)模型。本文首先对CS-SMV和CS-MMV模型的基本数学原理进行了详细介绍,讨论了两种情况下稀疏源信号恢复的存在性与唯一性,然后在此基础上重点对近年来出现的各种联合稀疏信号的恢复算法进行了综述,分析了各种算法的性能,较全面的讨论了MMV模型的应用前景。最后对CS-MMV模型的发展趋势进行了总结和展望。 展开更多
关键词 压缩感知 稀疏表示 单重测量向量 多重测量向量 匹配追踪 贪婪算法
下载PDF
采用信号子空间稀疏表示的DOA估计方法 被引量:10
3
作者 解虎 冯大政 魏倩茹 《系统工程与电子技术》 EI CSCD 北大核心 2015年第8期1717-1722,共6页
利用目标辐射源空间分布的稀疏性,提出了一种基于稀疏表示的多快拍联合波达方向(direction of arrival,DOA)估计方法。该方法首先利用采样数据矩阵大奇异值对应的左奇异向量估计信号子空间,然后采用加权迭代最小方差方法对信号空间进行... 利用目标辐射源空间分布的稀疏性,提出了一种基于稀疏表示的多快拍联合波达方向(direction of arrival,DOA)估计方法。该方法首先利用采样数据矩阵大奇异值对应的左奇异向量估计信号子空间,然后采用加权迭代最小方差方法对信号空间进行稀疏表示。与传统的角度高分辨估计方法不同,该方法没有利用样本的统计信息,因而对具有任意相关性的信号源能进行有效的波达方向估计,不需要进行去相关处理,且具有很高的分辨力及估计精度。实验表明在该方法能准确的对目标源方位进行估计,且极大地降低了稀疏表示的计算量。 展开更多
关键词 稀疏表示 波达方向估计 奇异值分解 加权迭代最小方差 多快拍
下载PDF
用于宽带频谱感知的全盲亚奈奎斯特采样方法 被引量:5
4
作者 盖建新 付平 +1 位作者 乔家庆 孟升卫 《电子与信息学报》 EI CSCD 北大核心 2012年第2期361-367,共7页
亚奈奎斯特采样方法是缓解宽带频谱感知技术中采样率过高压力的有效途径。该文针对现有亚奈奎斯特采样方法所需测量矩阵维数过大且重构阶段需要确切稀疏度的问题,提出了将测量矩阵较小的调制宽带转换器(MWC)应用于宽带频谱感知的方法。... 亚奈奎斯特采样方法是缓解宽带频谱感知技术中采样率过高压力的有效途径。该文针对现有亚奈奎斯特采样方法所需测量矩阵维数过大且重构阶段需要确切稀疏度的问题,提出了将测量矩阵较小的调制宽带转换器(MWC)应用于宽带频谱感知的方法。在重新定义频谱稀疏信号模型的基础上,提出了一个改进的盲谱重构充分条件,消除了构建MWC系统对最大频带宽度的依赖;在重构阶段,将稀疏度自适应匹配追踪(SAMP)算法引入到多测量向量(MMV)问题的求解中。最终实现了既不需要预知最大频带宽度也不需要确切频带数量的全盲低速采样,实验结果验证了该方法的有效性。 展开更多
关键词 宽带频谱感知 亚奈奎斯特采样 多测量向量 稀疏度自适应匹配追踪
下载PDF
多测量向量块稀疏信号重构ISAR成像算法 被引量:4
5
作者 冯俊杰 张弓 《系统工程与电子技术》 EI CSCD 北大核心 2017年第9期1959-1964,共6页
为实现有限脉冲快速逆合成孔径雷达(inverse synthetic aperture radar,ISAR)稀疏成像,利用ISAR目标块状结构特征,提出一种基于多量测向量(multiple measurement vectors,MMV)模型的块稀疏信号重构ISAR成像算法。首先,构建MMV稀疏成像模... 为实现有限脉冲快速逆合成孔径雷达(inverse synthetic aperture radar,ISAR)稀疏成像,利用ISAR目标块状结构特征,提出一种基于多量测向量(multiple measurement vectors,MMV)模型的块稀疏信号重构ISAR成像算法。首先,构建MMV稀疏成像模型,将ISAR成像转化为MMV块L0范数的稀疏重构问题。其次,选用负指数函数序列作为平滑函数去近似块L0范数,通过构建一个递减的参数序列,对平滑函数优化求解,采用梯度投影方法将所求解投影到可行解空间。最后,增加修正步骤,确保沿着最速下降方向对块稀疏信号优化求解。仿真结果验证了本文算法在成像时间和成像质量方面具有优势。 展开更多
关键词 逆合成孔径雷达 多量测向量 块稀疏信号 平滑函数
下载PDF
基于块剪枝多路径匹配追踪的多信号联合重构 被引量:3
6
作者 司菁菁 候肖兰 程银波 《系统工程与电子技术》 EI CSCD 北大核心 2016年第9期1993-1999,共7页
针对多路径匹配追踪(multipath matching pursuit,MMP)无法利用稀疏信号的结构信息、迭代层数较高时计算复杂度较大等问题,提出了一种适用于重构块稀疏信号的块剪枝多路径匹配追踪算法。该算法以原子块作为路径扩张的节点,在一定迭代层... 针对多路径匹配追踪(multipath matching pursuit,MMP)无法利用稀疏信号的结构信息、迭代层数较高时计算复杂度较大等问题,提出了一种适用于重构块稀疏信号的块剪枝多路径匹配追踪算法。该算法以原子块作为路径扩张的节点,在一定迭代层数后引入剪枝操作,极大地降低了数据运算量。进而,针对多观测向量(multiple measurement vector,MMV)问题,提出了MMV块剪枝MMP算法,用以实现无线传感网小范围内多传感器信号的联合重构。实验表明,块剪枝MMP的重构性能优于MMP,MMV块剪枝MMP的联合重构性能优于MMV块A*正交匹配追踪、MMV子空间匹配追踪和MMV正交匹配追踪。 展开更多
关键词 分布式压缩感知 多观测向量 块稀疏 多路径匹配追踪
下载PDF
基于多测量向量模型的极化探地雷达成像算法 被引量:2
7
作者 屈乐乐 桂客 张丽丽 《电讯技术》 北大核心 2017年第1期53-58,共6页
针对极化探地雷达(GPR)工作过程中目标成像空间的联合稀疏性,提出了一种基于多测量向量模型的极化探地雷达成像算法。在建立极化探地雷达回波信号模型的基础上,利用各极化通道测量数据的联合稀疏性将各个极化通道的测量数据等效成多测... 针对极化探地雷达(GPR)工作过程中目标成像空间的联合稀疏性,提出了一种基于多测量向量模型的极化探地雷达成像算法。在建立极化探地雷达回波信号模型的基础上,利用各极化通道测量数据的联合稀疏性将各个极化通道的测量数据等效成多测量向量(MMV),通过多任务贝叶斯压缩感知(MT-BCS)算法对各个极化通道的测量数据进行联合处理从而实现各个极化通道对应的探测场景反射率的重建。基于时域有限差分(FDTD)法的仿真数据处理结果表明所提成像算法在目标位置重建的准确性和背景杂波抑制能力上均优于单测量向量(SMV)模型的极化探地雷达成像算法。 展开更多
关键词 极化探地雷达 目标成像 多测量向量 多任务贝叶斯压缩感知
下载PDF
基于差值映射的压缩感知MUSIC算法 被引量:5
8
作者 吕志丰 雷宏 《电子与信息学报》 EI CSCD 北大核心 2015年第8期1874-1878,共5页
多快拍(MMV)问题旨在恢复具有相同稀疏结构的多列信号。在传统阵列信号处理中MMV问题的求解通常采用多重信号分类(MUSIC)等确定性方法实现,但当快拍数不足或存在相干源时该类方法失效;而在压缩感知(CS)的概率求解模型下,即使信源相干也... 多快拍(MMV)问题旨在恢复具有相同稀疏结构的多列信号。在传统阵列信号处理中MMV问题的求解通常采用多重信号分类(MUSIC)等确定性方法实现,但当快拍数不足或存在相干源时该类方法失效;而在压缩感知(CS)的概率求解模型下,即使信源相干也能得到恢复结果,但现有算法普遍性能不足。近期Kim等人的研究表明,将CS与MUSIC相结合可得到比二者更加优秀的性能和更为宽泛的使用条件,该方法被称作压缩感知MUSIC或CS-MUSIC算法。作为一种投影型非凸优化算法,差值映射(DM)最早用于解决X射线晶体学中的相位恢复问题,并逐渐在其他非凸及压缩感知问题的求解中展示出优良性能。该文提出一种基于差值映射的CS-MUSIC算法,仿真结果表明该算法在MMV问题求解中十分有效,相比经典CS-MUSIC具有更高的恢复成功率。 展开更多
关键词 压缩感知 多快拍问题 联合稀疏 多重信号分类 差值映射
下载PDF
基于多观测向量块稀疏的MIMO雷达非理想正交波形成像 被引量:3
9
作者 陈桥 童宁宁 +1 位作者 胡晓伟 丁姗姗 《系统工程与电子技术》 EI CSCD 北大核心 2020年第12期2747-2754,共8页
基于稀疏恢复的多输入多输出(multiple input multiple output,MIMO)雷达波形分离方法,能够代替匹配滤波,提高MIMO雷达非理想正交波形分离效果,对目标高分辨成像。但由于目标像稀疏性较弱,多观测向量(multiple measurement vector,MMV)... 基于稀疏恢复的多输入多输出(multiple input multiple output,MIMO)雷达波形分离方法,能够代替匹配滤波,提高MIMO雷达非理想正交波形分离效果,对目标高分辨成像。但由于目标像稀疏性较弱,多观测向量(multiple measurement vector,MMV)稀疏恢复算法的效果有限。通过调整感知矩阵发掘目标像的块稀疏性,提出了一种基于块稀疏的MMV稀疏重构算法来提高成像质量。首先采用改进的复合三角函数(improved composite trigonometric function,ICTF)作为平滑函数近似l 0范数,然后将其扩展到基于块稀疏的MMV模型,最后通过自适应调整正则化参数提升算法稳健性。通过实验验证了该算法在不同稀疏度、不同信噪比下的重构性能,仿真分析了其应用于MIMO雷达对多散射点目标模型的成像效果。仿真结果表明,所提算法能够更好地提高成像质量。 展开更多
关键词 多输入多输出成像 多观测向量 块稀疏 改进复合三角函数 稳健性
下载PDF
基于改进多重测量向量模型的SAR成像算法 被引量:2
10
作者 陈一畅 张群 +1 位作者 杨婷 罗迎 《电子与信息学报》 EI CSCD 北大核心 2016年第10期2423-2429,共7页
近年来,基于压缩感知(Compressed Sensing,CS)理论的稀疏场景SAR成像成为研究热点。在CS理论中,对于具有相同稀疏结构的联合稀疏目标信号源,多重测量向量(Multiple Measurement Vectors,MMV)模型可以获得优于单重测量矢量(Single Measur... 近年来,基于压缩感知(Compressed Sensing,CS)理论的稀疏场景SAR成像成为研究热点。在CS理论中,对于具有相同稀疏结构的联合稀疏目标信号源,多重测量向量(Multiple Measurement Vectors,MMV)模型可以获得优于单重测量矢量(Single Measurement Vector,SMV)模型的重构性能。然而,在距离徙动(Range Migration)不可忽略的应用场景,SAR各脉冲回波1维距离像具有不完全相同的稀疏结构,这使得无法在SAR应用中直接引入MMV模型。该文针对MMV模型与SAR距离徙动的矛盾,提出一种改进的MMV模型。在该模型下,各方位向位置对应的1维距离像的稀疏结构不要求完全相同,而是符合距离徙动特性。论文所提出的RM-OMP算法根据符合距离徙动特性的稀疏结构搜索稀疏信号支撑集,可以准确地重建稀疏信号源。论文采用仿真数据和实测数据实验验证了所提模型和算法的有效性。 展开更多
关键词 合成孔径雷达 稀疏恢复 多重测量向量模型 距离徙动
下载PDF
基于多观测向量序列降采样恢复的稀疏矩阵重构 被引量:1
11
作者 何兴宇 童宁宁 +1 位作者 胡晓伟 冯为可 《系统工程与电子技术》 EI CSCD 北大核心 2018年第2期250-254,共5页
二维稀疏信号的重构可以通过解多观测向量的稀疏表示问题来实现。然而,当各向量的稀疏结构不同时,将稀疏恢复算法拓展到多观测向量模型的方法将不再有效。提出了一种序列降采样重构的方法用于实现稀疏矩阵的重构。该方法通过构造降采样... 二维稀疏信号的重构可以通过解多观测向量的稀疏表示问题来实现。然而,当各向量的稀疏结构不同时,将稀疏恢复算法拓展到多观测向量模型的方法将不再有效。提出了一种序列降采样重构的方法用于实现稀疏矩阵的重构。该方法通过构造降采样矩阵,大幅降低稀疏矩阵信号的稀疏度,再通过多观测向量序列观测和恢复,完成对稀疏矩阵的重构。理论分析表明,所提方法能够实现对高稀疏度矩阵的高概率重构。实验表明,所提算法能够有效地实现二维稀疏信号和图像重构。 展开更多
关键词 降采样矩阵 多观测向量 压缩感知 稀疏矩阵 稀疏重构
下载PDF
多测量向量模型下的修正MUSIC算法 被引量:2
12
作者 林云 胡强 《电子与信息学报》 EI CSCD 北大核心 2018年第11期2584-2589,共6页
压缩感知多测量向量(MMV)模型用于解决具有相同稀疏结构的多快拍问题,在传统阵列信号处理应用中多重信号分类(MUSIC)方法是一种常见的方法,但当快拍数不足(低于稀疏度)时其性能将急剧恶化。Kim等人(2012)推导出一种修正的MUSIC谱,并将... 压缩感知多测量向量(MMV)模型用于解决具有相同稀疏结构的多快拍问题,在传统阵列信号处理应用中多重信号分类(MUSIC)方法是一种常见的方法,但当快拍数不足(低于稀疏度)时其性能将急剧恶化。Kim等人(2012)推导出一种修正的MUSIC谱,并将压缩重构方法和MUSIC算法结合提出压缩感知MUSIC算法(CS-MUSIC),能够有效克服快拍数不足的问题。该文将Kim等人的结论扩展到一般情形,并基于传统的MUSIC谱和CSMUSIC谱提出一种修正的MUSIC算法(MMUSIC)。仿真结果表明所提算法能够有效克服快拍数不足的问题,并且具有比CS-MUSIC算法和压缩感知贪婪算法更高的重构概率。 展开更多
关键词 压缩感知 多测量向量模型 联合稀疏 多重信号分类
下载PDF
Rank-defective millimeter-wave channel estimation based on subspace-compressive sensing
13
作者 Majid Shakhsi Dastgahian Hossein Khoshbin 《Digital Communications and Networks》 SCIE 2016年第4期206-217,共12页
Millimeter-wave communication (mmWC) is considered as one of the pioneer candidates for 5G indoor and outdoor systems in E-band. To subdue the channel propagation characteristics in this band, high dimensional anten... Millimeter-wave communication (mmWC) is considered as one of the pioneer candidates for 5G indoor and outdoor systems in E-band. To subdue the channel propagation characteristics in this band, high dimensional antenna arrays need to be deployed at both the base station (BS) and mobile sets (MS). Unlike the conventional MIMO systems, Millimeter-wave (mmW) systems lay away to employ the power predatory equipment such as ADC or RF chain in each branch of MIMO system because of hardware constraints. Such systems leverage to the hybrid precoding (combining) architecture for downlink deployment. Because there is a large array at the transceiver, it is impossible to estimate the channel by conventional methods. This paper develops a new algorithm to estimate the mmW channel by exploiting the sparse nature of the channel. The main contribution is the representation of a sparse channel model and the exploitation of a modified approach based on Multiple Measurement Vector (MMV) greedy sparse framework and subspace method of Multiple Signal Classification (MUSIC) which work together to recover the indices of non-zero elements of an unknown channel matrix when the rank of the channel matrix is defected. In practical rank-defective channels, MUSIC fails, and we need to propose new extended MUSIC approaches based on subspace enhancement to compensate the limitation of MUSIC. Simulation results indicate that our proposed extended MUSIC algorithms will have proper performances and moderate computational speeds, and that they are even able to work in channels with an unknown sparsity level. 展开更多
关键词 Millimeter wave communications Sparse channel estimation Rank-defective Subspace enhancement multiple measurement vectors (mmv
下载PDF
Iterative subspace matching pursuit for joint sparse recovery
14
作者 Shu Feng Zhang Linghua Ding Yin 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2023年第2期26-35,共10页
Joint sparse recovery(JSR)in compressed sensing(CS)is to simultaneously recover multiple jointly sparse vectors from their incomplete measurements that are conducted based on a common sensing matrix.In this study,the ... Joint sparse recovery(JSR)in compressed sensing(CS)is to simultaneously recover multiple jointly sparse vectors from their incomplete measurements that are conducted based on a common sensing matrix.In this study,the focus is placed on the rank defective case where the number of measurements is limited or the signals are significantly correlated with each other.First,an iterative atom refinement process is adopted to estimate part of the atoms of the support set.Subsequently,the above atoms along with the measurements are used to estimate the remaining atoms.The estimation criteria for atoms are based on the principle of minimum subspace distance.Extensive numerical experiments were performed in noiseless and noisy scenarios,and results reveal that iterative subspace matching pursuit(ISMP)outperforms other existing algorithms for JSR. 展开更多
关键词 joint sparse recovery(JSR) multiple measurement vector(mmv) support set estimation compressed sensing(CS)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部