期刊文献+
共找到407篇文章
< 1 2 21 >
每页显示 20 50 100
Energy-efficient Scheme for Multiple Access Network Selection Using Principal Component Analysis 被引量:2
1
作者 王莉 王景尧 +2 位作者 魏翼飞 马跃 满毅 《China Communications》 SCIE CSCD 2011年第3期133-144,共12页
This paper brings forward a novel dynamic multiple access network selection scheme(NDMAS),which could achieve less energy loss and improve the poor adaptive capability caused by the variable network parameters.Firstly... This paper brings forward a novel dynamic multiple access network selection scheme(NDMAS),which could achieve less energy loss and improve the poor adaptive capability caused by the variable network parameters.Firstly,a multiple access network selection mathematical model based on information theory is presented.From the perspective of information theory,access selection is essentially a process to reduce the information entropy in the system.It can be found that the lower the information entropy is,the better the system performance fulfills.Therefore,this model is designed to reduce the information entropy by removing redundant parameters,and to avoid the computational cost as well.Secondly,for model implementation,the Principal Component Analysis(PCA) is employed to process the observation data to find out the related factors which affect the users most.As a result,the information entropy is decreased.Theoretical analysis proves that system loss and computational complexity have been decreased by using the proposed approach,while the network QoS and accuracy are guaranteed.Finally,simulation results show that our scheme achieves much better system performance in terms of packet delay,throughput and call blocking probability than other currently existing ones. 展开更多
关键词 multiple access network selection information entropy quality of service principal component analysis
下载PDF
Dimensioning a stockpile operation using principal component analysis 被引量:1
2
作者 Siyi Li Marco de Werk +1 位作者 Louis St-Pierre Mustafa Kumral 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2019年第12期1485-1494,共10页
Mineral processing plants generally have narrow tolerances for the grades of their input raw materials,so stockpiles are often maintained to reduce material variance and ensure consistency.However,designing stockpiles... Mineral processing plants generally have narrow tolerances for the grades of their input raw materials,so stockpiles are often maintained to reduce material variance and ensure consistency.However,designing stockpiles has often proven difficult when the input material consists of multiple sub-materials that have different levels of variances in their grades.In this paper,we address this issue by applying principal component analysis(PCA)to reduce the dimensions of the input data.The study was conducted in three steps.First,we applied PCA to the input data to transform them into a lower-dimension space while retaining 80% of the original variance.Next,we simulated a stockpile operation with various geometric stockpile configurations using a stockpile simulator in MATLAB.We used the variance reduction ratio as the primary criterion for evaluating the efficiency of the stockpiles.Finally,we used multiple regression to identify the relationships between stockpile efficiency and various design parameters and analyzed the regression results based on the original input variables and principal components.The results showed that PCA is indeed useful in solving a stockpile design problem that involves multiple correlated input-material grades. 展开更多
关键词 bed-blending MINING stockpile principal component analysis multiple regression
下载PDF
Combination Method of Principal Component Analysis and Support Vector Machine for On-line Process Monitoring and Fault Diagnosis 被引量:2
3
作者 赵旭 文香军 邵惠鹤 《Journal of Donghua University(English Edition)》 EI CAS 2006年第1期53-58,共6页
On-line monitoring and fault diagnosis of chemical process is extremely important for operation safety and product quality. Principal component analysis (PCA) has been widely used in multivariate statistical process m... On-line monitoring and fault diagnosis of chemical process is extremely important for operation safety and product quality. Principal component analysis (PCA) has been widely used in multivariate statistical process monitoring for its ability to reduce processes dimensions. PCA and other statistical techniques, however, have difficulties in differentiating faults correctly in complex chemical process. Support vector machine (SVM) is a novel approach based on statistical learning theory, which has emerged for feature identification and classification. In this paper, an integrated method is applied for process monitoring and fault diagnosis, which combines PCA for fault feature extraction and multiple SVMs for identification of different fault sources. This approach is verified and illustrated on the Tennessee Eastman benchmark process as a case study. Results show that the proposed PCA-SVMs method has good diagnosis capability and overall diagnosis correctness rate. 展开更多
关键词 principal component analysis multiple support vector machine process monitoring fault detection fault diagnosis.
下载PDF
Biomass estimation of Shorea robusta with principal component analysis of satellite data
4
作者 Nilanchal Patel Arnab Majumdar 《Journal of Forestry Research》 SCIE CAS CSCD 2010年第4期469-474,524,共7页
Spatio-temporal assessment of the above ground biomass (AGB) is a cumbersome task due to the difficulties associated with the measurement of different tree parameters such as girth at breast height and height of tre... Spatio-temporal assessment of the above ground biomass (AGB) is a cumbersome task due to the difficulties associated with the measurement of different tree parameters such as girth at breast height and height of trees. The present research was conducted in the campus of Birla Institute of Technology, Mesra, Ranchi, India, which is predomi- nantly covered by Sal (Shorea robusta C. F. Gaertn). Two methods of regression analysis was employed to determine the potential of remote sensing parameters with the AGB measured in the field such as linear regression analysis between the AGB and the individual bands, principal components (PCs) of the bands, vegetation indices (VI), and the PCs of the VIs respectively and multiple linear regression (MLR) analysis be- tween the AGB and all the variables in each category of data. From the linear regression analysis, it was found that only the NDVI exhibited regression coefficient value above 0.80 with the remaining parameters showing very low values. On the other hand, the MLR based analysis revealed significantly improved results as evidenced by the occurrence of very high correlation coefficient values of greater than 0.90 determined between the computed AGB from the MLR equations and field-estimated AGB thereby ascertaining their superiority in providing reliable estimates of AGB. The highest correlation coefficient of 0.99 is found with the MLR involving PCs of VIs. 展开更多
关键词 above ground biomass spectral response modeling vegetation indices principal component analysis linear and multiple regression analysis.
下载PDF
Cardiovascular age of aviation personnel: based on the principal component analysis of heart rate and blood pressure variability
5
作者 牛有国 王守岩 +2 位作者 张玉海 王兴邦 张立藩 《Journal of Medical Colleges of PLA(China)》 CAS 2004年第1期64-70,共7页
Objective: To introduce a method to calculate cardiovascular age, a new, accurate and much simpler index for assessing cardiovascular autonomic regulatory function, based on statistical analysis of heart rate and bloo... Objective: To introduce a method to calculate cardiovascular age, a new, accurate and much simpler index for assessing cardiovascular autonomic regulatory function, based on statistical analysis of heart rate and blood pressure variability (HRV and BPV) and baroreflex sensitivity (BRS) data. Methods: Firstly, HRV and BPV of 89 healthy aviation personnel were analyzed by the conventional autoregressive (AR) spectral analysis and their spontaneous BRS was obtained by the sequence method. Secondly, principal component analysis was conducted over original and derived indices of HRV, BPV and BRS data and the relevant principal components, PCi orig and PCi deri (i=1, 2, 3,...) were obtained. Finally, the equation for calculating cardiovascular age was obtained by multiple regression with the chronological age being assigned as the dependent variable and the principal components significantly related to age as the regressors. Results: The first four principal components of original indices accounted for over 90% of total variance of the indices, so did the first three principal components of derived indices. So, these seven principal components could reflect the information of cardiovascular autonomic regulation which was embodied in the 17 indices of HRV, BPV and BRS exactly with a minimal loss of information. Of the seven principal components, PC2 orig , PC4 orig and PC2 deri were negatively correlated with the chronological age ( P <0 05), whereas the PC3 orig was positively correlated with the chronological age ( P <0 01). The cardiovascular age thus calculated from the regression equation was significantly correlated with the chronological age among the 89 aviation personnel ( r =0.73, P <0 01). Conclusion: The cardiovascular age calculated based on a multi variate analysis of HRV, BPV and BRS could be regarded as a comprehensive indicator reflecting the age dependency of autonomic regulation of cardiovascular system in healthy aviation personnel. 展开更多
关键词 flying personnel heart rate variability blood pressure variability baroreflex sensitivity age principal components analysis multiple regression analysis
下载PDF
Analyzing Multiple Phenotypes Based on Principal Component Analysis
6
作者 De-liang BU San-guo ZHANG Na LI 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2022年第4期843-860,共18页
Joint analysis of multiple phenotypes can have better interpretation of complex diseases and increase statistical power to detect more significant single nucleotide polymorphisms(SNPs)compare to traditional single phe... Joint analysis of multiple phenotypes can have better interpretation of complex diseases and increase statistical power to detect more significant single nucleotide polymorphisms(SNPs)compare to traditional single phenotype analysis in genome-wide association analysis.Principle component analysis(PCA),as a popular dimension reduction method,has been broadly used in the analysis of multiple phenotypes.Since PCA transforms the original phenotypes into principal components(PCs),it is natural to think that by analyzing these PCs,we can combine information across phenotypes.Existing PCA-based methods can be divided into two categories,either selecting one particular PC manually or combining information from all PCs.In this paper,we propose an adaptive principle component test(APCT)which selects and combines the PCs adaptively by using Cauchy combination method.Our proposed method can be seen as a generalization of traditional PCA based method since it contains two existing methods as special situation.Extensive simulation shows that our method is robust and can generate powerful result in various situations.The real data analysis of stock mice data also demonstrate that our proposed APCT can identify significant SNPs that are missed by traditional methods. 展开更多
关键词 multiple phenotypes principal component analysis cauchy combination method
原文传递
Statistical Analysis of Leaf Water Use Efficiency and Physiology Traits of Winter Wheat Under Drought Condition 被引量:8
7
作者 WU Xiao-li BAO Wei-kai 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2012年第1期82-89,共8页
Five statistical methods including simple correlation, multiple linear regression, stepwise regression, principal components, and path analysis were used to explore the relationship between leaf water use efficiency ... Five statistical methods including simple correlation, multiple linear regression, stepwise regression, principal components, and path analysis were used to explore the relationship between leaf water use efficiency (WUE) and physiological traits (photosynthesis rate, stomatal conductance, transpiration rate, intercellular CO2 concentration, etc.) of 29 wheat cultivars. The results showed that photosynthesis rate, stomatal conductance, and transpiration rate were the most important leaf WUE parameters under drought condition. Based on the results of statistical analyses, principal component analysis could be the most suitable method to ascertain the relationship between leaf WUE and relative physiological traits. It is reasonable to assume that high leaf WUE wheat could be obtained by selecting breeding materials with high photosynthesis rate, low transpiration rate, and stomatal conductance under dry area. 展开更多
关键词 leaf water use efficiency multiple linear regression path analysis principal components simple correlation stepwise regression wheat genotype
下载PDF
Statistical Analysis of Process Monitoring Data for Software Process Improvement and Its Application 被引量:2
8
作者 Kazuhiro Esaki Yuki Ichinose Shigeru Yamada 《American Journal of Operations Research》 2012年第1期43-50,共8页
Software projects influenced by many human factors generate various risks. In order to develop highly quality software, it is important to respond to these risks reasonably and promptly. In addition, it is not easy fo... Software projects influenced by many human factors generate various risks. In order to develop highly quality software, it is important to respond to these risks reasonably and promptly. In addition, it is not easy for project managers to deal with these risks completely. Therefore, it is essential to manage the process quality by promoting activities of process monitoring and design quality assessment. In this paper, we discuss statistical data analysis for actual project management activities in process monitoring and design quality assessment, and analyze the effects for these software process improvement quantitatively by applying the methods of multivariate analysis. Then, we show how process factors affect the management measures of QCD (Quality, Cost, Delivery) by applying the multiple regression analyses to observed process monitoring data. Further, we quantitatively evaluate the effect by performing design quality assessment based on the principal component analysis and the factor analysis. As a result of analysis, we show that the design quality assessment activities are so effective for software process improvement. Further, based on the result of quantitative project assessment, we discuss the usefulness of process monitoring progress assessment by using a software reliability growth model. This result may enable us to give a useful quantitative measure of product release determination. 展开更多
关键词 Software PROCESS Improvement PROCESS Monitoring Design Quality ASSESSMENT multiple Regression analysis principal component analysis FACTOR analysis QUANTITATIVE Project ASSESSMENT
下载PDF
Multiple Local Reconstruction Model-based Fault Diagnosis for Continuous Processes 被引量:1
9
作者 赵春晖 李文卿 +1 位作者 孙优贤 高福荣 《自动化学报》 EI CSCD 北大核心 2013年第5期487-493,共7页
关键词 故障诊断方法 分解模型 连续过程 故障特征 重构 故障过程 分割算法 变量相关
下载PDF
Bayesian compressive principal component analysis
10
作者 Di MA Songcan CHEN 《Frontiers of Computer Science》 SCIE EI CSCD 2020年第4期29-38,共10页
Principal component analysis(PCA)is a widely used method for multivariate data analysis that projects the original high-dimensional data onto a low-dimensional subspace with maximum variance.However,in practice,we wou... Principal component analysis(PCA)is a widely used method for multivariate data analysis that projects the original high-dimensional data onto a low-dimensional subspace with maximum variance.However,in practice,we would be more likely to obtain a few compressed sensing(CS)measurements than the complete high-dimensional data due to the high cost of data acquisition and storage.In this paper,we propose a novel Bayesian algorithm for learning the solutions of PCA for the original data just from these CS measurements.To this end,we utilize a generative latent variable model incorporated with a structure prior to model both sparsity of the original data and effective dimensionality of the latent space.The proposed algorithm enjoys two important advantages:1)The effective dimensionality of the latent space can be determined automatically with no need to be pre-specified;2)The sparsity modeling makes us unnecessary to employ multiple measurement matrices to maintain the original data space but a single one,thus being storage efficient.Experimental results on synthetic and real-world datasets show that the proposed algorithm can accurately learn the solutions of PCA for the original data,which can in turn be applied in reconstruction task with favorable results. 展开更多
关键词 compressed sensing principal component analysis Bayesian learning sparsity modeling
原文传递
Soft sensor for ratio of soda to aluminate based on PCA-RBF multiple network
11
作者 桂卫华 李勇刚 王雅琳 《Journal of Central South University of Technology》 2005年第1期88-92,共5页
Based on principal component analysis, a multiple neural network was proposed. The principal component analysis was firstly used to reorganize the input variables and eliminate the correlativity. Then the reorganized ... Based on principal component analysis, a multiple neural network was proposed. The principal component analysis was firstly used to reorganize the input variables and eliminate the correlativity. Then the reorganized variables were divided into 2 groups according to the original information and 2 corresponding neural networks were established. A radial basis function network was used to depict the relationship between the output variables and the first group input variables which contain main original information. An other single-layer neural network model was used to compensate the error between the output of radial basis function network and the actual output variables. At last, The multiple network was used as soft sensor for the ratio of soda to aluminate in the process of high-pressure digestion of alumina. Simulation of industry application data shows that the prediction error of the model is less than 3%, and the model has good generalization ability. 展开更多
关键词 principal component analysis multiple neural network soft sensor ratio of soda to aluminate (generalization ability)
下载PDF
Study on mechanism and genetic analysis of lipid metabolism disorder in pregnant rats
12
作者 Li Sun Zhen-Wei Yan +5 位作者 Ying-Gang Peng Qu-Long Xiao Yi-Wen Yuan Ling Zhou Hao Hu Wan-Feng Li 《Journal of Hainan Medical University》 2019年第17期15-19,共5页
Objective: To analyze the characteristics and possible mechanism of lipid metabolism in pregnant rats with intestinal flora imbalance. Methods: A total of 129 sexually mature female SD rats were divided into three gro... Objective: To analyze the characteristics and possible mechanism of lipid metabolism in pregnant rats with intestinal flora imbalance. Methods: A total of 129 sexually mature female SD rats were divided into three groups: non-pregnant group (untreated healthy rats), healthy pregnant group (natural insemination pregnant rats), and pregnant microflora disorder group (pregnant rats were given mixed antibiotics by gavage to build the modeling), with 43 rats in each group. The contents of TG, LDL, HDL and TC were detected by automatic biochemical analyzer, and the contents of SCD1, PGC-1 alpha, PEPCK, ApoE and MTTP genes were detected by fluorescence quantitative PCR technology. Regression analysis was used to explore the comprehensive influence of each gene on total cholesterol expression in rats. Principal component analysis was used to explore the internal mechanism of lipid metabolism in pregnant rats with intestinal flora disorder. Results: The contents of TG, TC, LDL and HDL were compared among the three groups of rats and the differences were statistically significant (P<0.05) . The expression levels of related genes (SCD1, PGC-1, PEPCK, ApoE, MTTP) in the three groups were statistically significant (P<0.05) . SCD1 content in the non-pregnant group, healthy pregnancy group, and disordered pregnancy group was (0.92±0.12) μg/mL, (1.20±0.15)μg/mL, and (1.53±0.20) μg/mL, respectively. PGC-1 alpha content in the non-pregnant group, healthy pregnancy group, and disordered pregnancy group was (1.34±0.21) μg/mL, (0.93±0.12) micron /mL, and (0.41±0.08) μg/mL, respectively. PEPCK content in the non-pregnant group, healthy pregnancy group, and disordered pregnancy group was (0.48±0.06) μg/mL, (0.35±0.09)μg/mL, and (0.22±0.05) μg/mL, and the differences were statistically significant (P<0.05) . Multivariate linear regression analysis showed that the influence of gene content on The effect of each gene content on TC content was in order from large to small: SCD1 (OR=4.572) , PGC-1 (OR=3.387) , PEPCK (OR=3.935) , ApoE (OR=3.597) , MTTP (OR=3.096) . The principal component analysis showed that three principal components could be extracted from five related genes of lipid metabolism in pregnant rats with intestinal dysbiosis: SCD1/PEPCK pathway (contribution rate: 36.28%) , PGC-1 /ApoE pathway (contribution rate: 30.42%) , and MTTP pathway (contribution rate: 15.37%) . Conclusion: After pregnancy, blood lipids in rats are significantly increased while the imbalance of intestinal flora will lead to decreased blood lipids. The disorder of lipid metabolism in pregnant rats with intestinal flora imbalance is mainly related to the disorder of gene expression, which further affects the functions of SCD1/PEPCK, PGC-1 /ApoE and MTTP pathways. 展开更多
关键词 IMBALANCE of INTESTINAL FLORA Pregnancy Lipid metabolism DISORDER Genes Pathways principal component analysis multiple linear regression analysis
下载PDF
基于主成分分析的多重定量PCR荧光串扰校正
13
作者 王鹏 王振亚 +8 位作者 汪舜 张杰 张哲 杨天航 王弼陡 罗刚银 翁良飞 张翀宇 李原 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第4期1151-1157,共7页
聚合酶链式反应(PCR)是分子生物学常用的检测手段,主要用于对生物的DNA或RNA进行检测。由于荧光光谱重叠和滤光片过滤带宽限制,检测时所获得的荧光数据通常会包含荧光通道之间的串扰,串扰的存在使PCR结果分析变得复杂,并可能影响最终的... 聚合酶链式反应(PCR)是分子生物学常用的检测手段,主要用于对生物的DNA或RNA进行检测。由于荧光光谱重叠和滤光片过滤带宽限制,检测时所获得的荧光数据通常会包含荧光通道之间的串扰,串扰的存在使PCR结果分析变得复杂,并可能影响最终的检测结果。选择合适的光学元件,并确定通道间的补偿矩阵,可以降低甚至消除荧光串扰。目前荧光补偿矩阵大多通过迭代计算获得,还没有一种简单的方法可以从混合的多通道荧光数据中找到荧光补偿矩阵。为了快速获得荧光补偿矩阵,减小计算量,采用主成分分析法(PCA)中确定主成分的方式,基于搭建的测试平台进行单一染料实验,获得染料的荧光信号在各个检测通道的分布情况,计算得到荧光补偿矩阵。通过分析补偿矩阵,发现对于搭建的硬件系统,Cy5染料对Cy5.5通道串扰较大,串扰比例为8.76%,同时Cy5.5染料对Cy5通道串扰影响也相对较大,比例约为6.2%;其次是ROX染料对HEX通道串扰,比例约为2.68%;HEX染料对FAM通道串扰,比例约为1.58%;FAM染料对HEX通道串扰相对较小,比例约为0.25%,其余通道无明显串扰,与荧光光谱反映的结果一致。采用得到的荧光补偿矩阵对单一染料实验得到的原始荧光数据进行处理,有效去除了非目标通道的荧光串扰,实现了荧光通道数据的解耦,验证了方法的可行性。最后设计了染料颜色分辨实验,将不同浓度的多种染料进行组合测试,并采用所提出的方法将得到的数据进行荧光补偿。实验结果表明,荧光通道各自的线性相关性较高,五个荧光通道的线性相关系数r均大于0.99,该结果进一步验证了该补偿方法的有效性。 展开更多
关键词 聚合酶链式反应(PCR)检测 光谱分析 主成分分析 多重荧光检测 荧光串扰 荧光分离
下载PDF
武都地区初榨橄榄油酚类和脂肪酸组成对油脂氧化稳定性研究 被引量:1
14
作者 唐凤霞 李川 +3 位作者 周昊 陈虹霞 张昌伟 王成章 《林产化学与工业》 CAS CSCD 北大核心 2024年第1期111-119,共9页
对武都地区的白橄榄(U)、恩帕特雷(E)、奇迹(K)、阿斯(As)、中山24(Z)、云台14(Y)、皮瓜尔(P)、豆果(Arbe)、小苹果(M)、鄂植8(Ez)、阿尔伯萨拉(Arbo)、科拉蒂(C)、莱星(L)、佛奥(F)这14个品种初榨橄榄油的脂肪酸、酚类成分及油脂氧化... 对武都地区的白橄榄(U)、恩帕特雷(E)、奇迹(K)、阿斯(As)、中山24(Z)、云台14(Y)、皮瓜尔(P)、豆果(Arbe)、小苹果(M)、鄂植8(Ez)、阿尔伯萨拉(Arbo)、科拉蒂(C)、莱星(L)、佛奥(F)这14个品种初榨橄榄油的脂肪酸、酚类成分及油脂氧化稳定性进行检测和分析,单因素方差分析表明:品种间多酚和脂肪酸含量及油脂氧化稳定性存在显著性差异(p<0.05)。所有分析样品的脂肪酸组成均符合欧盟特级初榨橄榄油标准,初榨橄榄油中油酸质量分数在(56.12±0.24)%(豆果)和(71.45±0.42)%(科拉蒂)之间,亚油酸质量分数在(5.73±0.06)%(皮瓜尔)和(15.80±0.05)%(阿斯)之间,棕榈酸质量分数在(12.67±0.12)%(科拉蒂)和(18.76±0.04)%(豆果)之间。裂环烯醚萜类是主要的酚类成分,总酚质量分数最高为奇迹,为(471.35±29.34)mg/kg,最低为豆果,仅(165.65±8.08)mg/kg。主成分分析表明:富含橄榄苦苷苷元、女贞子苷元、橄榄裂环烯醚萜、油酸、芹菜素的品种氧化稳定性越高,而富含棕榈酸、亚油酸、酪醇、羟基酪醇、刺激醛的品种氧化稳定性越低。基于芹菜素、橄榄裂环烯醚萜、木犀草素和亚油酸建立的多元线性逐步回归模型可以预测90.70%的油脂氧化稳定性变化(p<0.001)。 展开更多
关键词 油橄榄 裂环烯醚萜类 脂肪酸 主成分分析 多元线性逐步回归分析
下载PDF
基于主成分的频谱迭代稀疏化语音增强方法
15
作者 董娴 邵玉斌 +2 位作者 杜庆治 龙华 马迪南 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第3期229-237,共9页
针对现有频谱稀疏化方法在复杂环境语音增强上性能不佳的问题,提出一种基于主成分分析的迭代频谱稀疏化方法.首先,对输入信号的语谱图进行二维中值滤波处理,得到行分量频谱和列分量频谱;对包含语音主音的行分量频谱序列进行主成分分析(P... 针对现有频谱稀疏化方法在复杂环境语音增强上性能不佳的问题,提出一种基于主成分分析的迭代频谱稀疏化方法.首先,对输入信号的语谱图进行二维中值滤波处理,得到行分量频谱和列分量频谱;对包含语音主音的行分量频谱序列进行主成分分析(PCA),以去除噪声部分并保留主要语音结构;然后联合列分量频谱序列和缩放因子进行混合重构原信号,并采用动态缩放因子实现对列分量频谱噪声的有效控制.在此基础上,利用稀疏化对噪声的抑制作用,对频谱进行多次稀疏化,以减弱噪声.实验结果表明,该方法增强了不同类型噪声下语音的信噪比,包括White、Pink、Babble、Volvo和Factory等五种噪声,输入信噪比为15 dB,所提方法的信噪比分别提升了13.89 dB,11.97 dB,5.65 dB,5.26 dB和4.73 dB,该方法在其他信噪比下也能有效地抑制噪声和保留有效特征信息,并减少因背景噪声引起的语音失真. 展开更多
关键词 语音增强 多维度频谱分析 谱稀疏化 主成分分析
下载PDF
高山地区夏季大气PM_(2.5)中元素的污染特征、生态风险及健康风险评估——以武当山为例
16
作者 赵明升 韩志勇 +7 位作者 任丽红 李刚 杨小阳 赵刚 韩慧霞 杜虹萱 高元官 徐义生 《环境化学》 CAS CSCD 北大核心 2024年第5期1573-1584,共12页
为了解华中高山地区夏季大气PM_(2.5)中元素的污染特征,于2018年6月在湖北省十堰市武当山国家空气质量监测站采集PM_(2.5)样品,利用电感耦合等离子体质谱仪(ICP-MS)测定样品中18种元素(Na、K、Ca、Mg、Al、Fe、V、Cr、Mo、Cu、Zn、Mn、N... 为了解华中高山地区夏季大气PM_(2.5)中元素的污染特征,于2018年6月在湖北省十堰市武当山国家空气质量监测站采集PM_(2.5)样品,利用电感耦合等离子体质谱仪(ICP-MS)测定样品中18种元素(Na、K、Ca、Mg、Al、Fe、V、Cr、Mo、Cu、Zn、Mn、Ni、As、Se、Cd、Ba和Pb)的浓度,并探讨了其来源、生态风险和健康风险.结果表明,武当山PM_(2.5)的日均浓度范围为5.00—33.65μg·m^(-3),平均浓度为(16.84±7.07)μg·m^(-3);元素K、Na、Fe、Ca、Al、Mg和Zn的浓度较高,7种元素占所分析元素的97.68%以上;富集因子结果表明,Mo、Zn、Pb、Cd和Se的EF值高于100,可能受周边人为活动排放污染物的区域或长距离传输影响;主成分-多元线性回归(PCA-MLR)结果表明,PM_(2.5)中元素主要来自于燃煤和机动车(57.57%)、工业源(22.52%)和地壳(19.91%);武当山PM_(2.5)重金属的生态风险指数极高,其中Cd、Se和Mo的潜在生态危害程度极强;健康风险评估显示,综合非致癌风险(HI)在儿童和成人中分别为2.28×10-2和3.04×10-2,均在可接受水平内,综合致癌风险(CRT)在儿童和成人中分别为4.45×10-7和2.37×10-6,说明成人存在潜在的致癌风险;Cr在成人中的致癌风险为1.88×10-6,说明Cr在成人中存在潜在的致癌风险,同种金属对人体的非致癌风险和致癌风险均表现为成人>儿童. 展开更多
关键词 PM_(2.5) 元素 富集因子 主成分-多元线性回归 (PCA-MLR) 生态风险 健康风险评估
下载PDF
金虎斑鱼形态性状与体质量的相关性及通径分析
17
作者 陈春秀 尚晓迪 +3 位作者 马超 王群山 于燕光 贾磊 《天津农业科学》 CAS 2024年第6期49-54,共6页
为研究金虎斑鱼[Epinephelus fuscoguttatus(♀)×E.tukula(♂)]不同生长阶段形态性状间的相关关系,分别测定了8、11、14月龄体质量(Y)、全长(X_(1))、体长(X_(2))、头长(X_(3))、体高(X_(4))、体宽(X_(5))、尾柄高(X_(6))、眼径(X_... 为研究金虎斑鱼[Epinephelus fuscoguttatus(♀)×E.tukula(♂)]不同生长阶段形态性状间的相关关系,分别测定了8、11、14月龄体质量(Y)、全长(X_(1))、体长(X_(2))、头长(X_(3))、体高(X_(4))、体宽(X_(5))、尾柄高(X_(6))、眼径(X_(7))、眼后头长(X_(8))等形态性状,并对不同月龄表型性状进行了相关分析、主成分分析和通径分析。结果表明:各月龄杂交后代形态性状与体质量的多元回归方程为Y_(8月龄)=-188.404+13.099X_(3)+20.491X_(5);Y_(11月龄)=-864.627+54.416X_(5)+54.206X_(6);Y_(14月龄)=-837.373+33.211X_(3)+55.331X_(4);金虎斑鱼不同月龄的形态性状之间存在着不同程度的正相关,除14月龄头长、眼径、眼后头长外,各形态性状与体质量的相关性均达到极显著水平(P<0.01);8月龄和11月龄第一主成分均指向增长、增质量因子,14月龄第一主成分指向增长、增质量和体高因子,3个月龄第二主成分还是以增高、增长和增质量因子为主;8月龄和11月龄体宽对体质量直接作用均最大(0.336、0.361),14月龄体高对体质量直接作用最大(0.608),决定系数分析结果与通径分析结果一致。综上,金虎斑鱼在3个月龄阶段均以增长、增质量为主,建立的多元线性回归方程能够估算不同月龄金虎斑鱼的体质量。 展开更多
关键词 金虎斑鱼 相关性分析 主成分分析 通径分析 多元回归分析
下载PDF
基于MSPCA的传感器故障诊断与数据重构 被引量:2
18
作者 徐涛 王祈 《计算机工程与应用》 CSCD 北大核心 2008年第11期168-169,191,共3页
讨论了基于多尺度主元分析的故障传感器数据重构问题。传统的多尺度主元分析方法没有建立故障传感器数据重构模型,在相关传感器信号的所有尺度上建立主元分析模型进行传感器故障诊断的基础上,将主元分析模型的重构结果组合后进行小波逆... 讨论了基于多尺度主元分析的故障传感器数据重构问题。传统的多尺度主元分析方法没有建立故障传感器数据重构模型,在相关传感器信号的所有尺度上建立主元分析模型进行传感器故障诊断的基础上,将主元分析模型的重构结果组合后进行小波逆变换,设计了能够实现故障传感器数据重构的多尺度主元分析模型,从而实现故障传感器的数据重构。最后,利用试车台液氢供应系统的传感器数据仿真了几种典型传感器故障,并对设计模型实现数据重构的实用性和有效性进行了验证。 展开更多
关键词 多尺度主元分析 故障传感器 数据重构
下载PDF
基于数据挖掘的课程教学成效分析与教学改进研究 被引量:2
19
作者 汪伟 潘梦琪 +1 位作者 廖达海 吴南星 《高教学刊》 2024年第5期102-106,共5页
随着现代信息技术的发展,教学数据采集已经覆盖线上线下教学的全流程,对教学数据能否进行深入挖掘分析将决定能否有效建立基于数据驱动的现代教学决策方式。该文从机械工程基础课程线上线下教与学的采集数据出发,运用相关系数分析、主... 随着现代信息技术的发展,教学数据采集已经覆盖线上线下教学的全流程,对教学数据能否进行深入挖掘分析将决定能否有效建立基于数据驱动的现代教学决策方式。该文从机械工程基础课程线上线下教与学的采集数据出发,运用相关系数分析、主成分分析及多元线性回归等多重数据处理和分析方法,对测试成绩的合理性、影响测试成绩的主成分要素的相关性及权重、学业成绩预测方程等进行深入研究,将信息化教学与大数据分析技术进行融合。该文初步建立基于教学数据挖掘的学习成效分析和学业诊断方法,为教学持续改进提供依据和思路,也为进一步建立数据驱动的教学反馈机制和形成个性化教学模式奠定基础。 展开更多
关键词 相关性分析 主成分分析 多元线性回归 信息化教学 大数据
下载PDF
多变量相关性Gentle Adaboost的风机叶片覆冰故障诊断 被引量:1
20
作者 赵平 赵健 +2 位作者 吴姗 李芳芳 张辉 《控制工程》 CSCD 北大核心 2024年第6期1107-1113,共7页
为进一步提高风电发电机组覆冰故障诊断模型的精度,缩短隐患消除的周期,提出基于多变量相关性平稳自适应增强(Gentle Adaboost)的风机叶片覆冰故障诊断方法。首先,对监控与数据采集(supervisory control and data acquisition,SCADA)系... 为进一步提高风电发电机组覆冰故障诊断模型的精度,缩短隐患消除的周期,提出基于多变量相关性平稳自适应增强(Gentle Adaboost)的风机叶片覆冰故障诊断方法。首先,对监控与数据采集(supervisory control and data acquisition,SCADA)系统的多变量数据进行归一化处理,统一变量量纲;然后,通过一维卷积神经网络提取多变量间的相关性信息,并通过主成分分析法减少特征向量的维度,提取向量中的关键成分;最后,将特征向量导入具有强鲁棒性的集成学习算法Gentle Adaboost中进行学习,以获得具有高泛化能力的覆冰故障诊断模型。针对实际数据与6种经典算法进行了对比实验,结果表明,所提方法的覆冰故障诊断精度更高。 展开更多
关键词 多变量 主成分分析 集成学习 叶片覆冰 故障诊断
下载PDF
上一页 1 2 21 下一页 到第
使用帮助 返回顶部