The problem of channel estimation for multiple an- tenna orthogonal frequency division multiplexing (OFDM) systems subject to unknown carrier frequency offset (CFO) is addressed. Multiple signal classification (M...The problem of channel estimation for multiple an- tenna orthogonal frequency division multiplexing (OFDM) systems subject to unknown carrier frequency offset (CFO) is addressed. Multiple signal classification (MUSIC)-Iike algorithm, which generally has been used for direction estimation or frequency estimation, is used for channel estimation in multiple antenna OFDM systems. A reduced dimensional (RD)-MUSIC based algorithm for channel estimation is proposed in multiple antenna OFDM systems with unknown CFO. The Cramer-Rao bound (CRB) of channel estimation in multiple antenna OFDM systems with unknown CFO is derived. The proposed algorithm has a superior performance of channel estimation compared with the Capon method and the least squares method.展开更多
This paper addresses the issue of the direction of arrival (DOA) estimation under the compressive sampling (CS) framework. A novel approach, modified multiple signal classification (MMUSIC) based on the CS array...This paper addresses the issue of the direction of arrival (DOA) estimation under the compressive sampling (CS) framework. A novel approach, modified multiple signal classification (MMUSIC) based on the CS array (CSA-MMUSIC), is proposed to resolve the DOA estimation of correlated signals and two closely adjacent signals. By using two random CS matrices, a large size array is compressed into a small size array, which effectively reduces the number of the front end circuit. The theoretical analysis demonstrates that the proposed approach has the advantages of low computational complexity and hardware structure compared to other MMUSIC approaches. Simulation results show that CSAMMUSIC can possess similar angular resolution as MMUSIC.展开更多
In this paper,we propose a beam space coversion(BSC)-based approach to achieve a single near-field signal local-ization under uniform circular array(UCA).By employing the centro-symmetric geometry of UCA,we apply BSC ...In this paper,we propose a beam space coversion(BSC)-based approach to achieve a single near-field signal local-ization under uniform circular array(UCA).By employing the centro-symmetric geometry of UCA,we apply BSC to extract the two-dimensional(2-D)angles of near-field signal in the Van-dermonde form,which allows for azimuth and elevation angle estimation by utilizing the improved estimation of signal para-meters via rotational invariance techniques(ESPRIT)algorithm.By substituting the calculated 2-D angles into the direction vec-tor of near-field signal,the range parameter can be conse-quently obtained by the 1-D multiple signal classification(MU-SIC)method.Simulations demonstrate that the proposed al-gorithm can achieve a single near-field signal localization,which can provide satisfactory performance and reduce computational complexity.展开更多
A fast MUltiple SIgnal Classification (MUSIC) spectrum peak search algorithm is devised, which regards the power of the MUSIC spectrum function as target distribution up to a constant of proportionality, and uses Metr...A fast MUltiple SIgnal Classification (MUSIC) spectrum peak search algorithm is devised, which regards the power of the MUSIC spectrum function as target distribution up to a constant of proportionality, and uses Metropolis-Hastings (MH) sampler, one of the most popular Markov Chain Monte Carlo (MCMC) techniques, to sample from it. The proposed method reduces greatly the tremendous computation and storage costs in conventional MUSIC techniques i.e., about two and four orders of magnitude in computation and storage costs under the conditions of the experiment in the paper respectively.展开更多
Cross-range scaling plays an important role in the inverse synthetic aperture radar(ISAR) imaging. Many of the published cross-range scaling algorithms are based on the fast Fourier transformation(FFT). However, the F...Cross-range scaling plays an important role in the inverse synthetic aperture radar(ISAR) imaging. Many of the published cross-range scaling algorithms are based on the fast Fourier transformation(FFT). However, the FFT technique is resolution limited, so that the FFT-based algorithms will fail in the rotation velocity(RV) estimation of the slow rotation target. In this paper,we propose an accurate cross-range scaling algorithm based on the multiple signal classification(MUSIC) method. We first select some range bins with the mono-component linear frequency modulated(LFM) signal model. Then, we dechirp the signal of each selected range bin into the form of sinusoidal signal, and utilize the super-resolution MUSIC technique to accurately estimate the frequency. After processing all the range bins, a linear relationship related to the RV can be obtained. Eventually, the ISAR image can be scaled. The proposal can precisely estimate the small RV of the slow rotation target with low computational complexity. Furthermore, the proposal can also be used in the case of cross-range scaling for the sparse aperture data. Experimental results with the simulated and raw data validate the superiority of the novel method.展开更多
An efficient hybrid time reversal(TR) imaging method based on signal subspace and noise subspace is proposed for electromagnetic superresolution detecting and imaging. First, the locations of targets are estimated b...An efficient hybrid time reversal(TR) imaging method based on signal subspace and noise subspace is proposed for electromagnetic superresolution detecting and imaging. First, the locations of targets are estimated by the transmitting-mode decomposition of the TR operator(DORT) method employing the signal subspace. Then, the TR multiple signal classification(TR-MUSIC)method employing the noise subspace is used in the estimated target area to get the superresolution imaging of targets. Two examples with homogeneous and inhomogeneous background mediums are considered, respectively. The results show that the proposed hybrid method has advantages in CPU time and memory cost because of the combination of rough and fine imaging.展开更多
This paper examines the direction of arrival(DOA)estimation for polarized signals impinging on a sparse vector sensor array which is based on the maximum interelement spacing constraint(MISC).The vector array effectiv...This paper examines the direction of arrival(DOA)estimation for polarized signals impinging on a sparse vector sensor array which is based on the maximum interelement spacing constraint(MISC).The vector array effectively utilizes the polarization domain information of incident signals,and the quaternion model is adopted for signals polarization characteristic maintenance and computational burden reduction.The features of MISC arrays are crucial to the mutual coupling effects reduction and higher degrees of freedom(DOFs).The quaternion data model based on vector MISC arrays is established,which extends the scalar MISC array into the vector MISC array.Based on the model,a quaternion multiple signal classification(MUSIC)algorithm based on vector MISC arrays is proposed for DOA estimation.The algorithm combines the advantages of the quaternion model and the vector MISC array to enhance the DOA estimation performance.Analytical simulations are performed to certify the capability of the algorithm.展开更多
The root multiple signal classification(root-MUSIC) algorithm is one of the most important techniques for direction of arrival(DOA) estimation. Using a uniform linear array(ULA) composed of M sensors, this metho...The root multiple signal classification(root-MUSIC) algorithm is one of the most important techniques for direction of arrival(DOA) estimation. Using a uniform linear array(ULA) composed of M sensors, this method usually estimates L signal DOAs by finding roots that lie closest to the unit circle of a(2M-1)-order polynomial, where L 〈 M. A novel efficient root-MUSIC-based method for direction estimation is presented, in which the order of polynomial is efficiently reduced to 2L. Compared with the unitary root-MUSIC(U-root-MUSIC) approach which involves real-valued computations only in the subspace decomposition stage, both tasks of subspace decomposition and polynomial rooting are implemented with real-valued computations in the new technique,which hence shows a significant efficiency advantage over most state-of-the-art techniques. Numerical simulations are conducted to verify the correctness and efficiency of the new estimator.展开更多
In this paper,a time-frequency associated multiple signal classification(MUSIC)al-gorithm which is suitable for through-wall detection is proposed.The technology of detecting hu-man targets by through-wall radar can b...In this paper,a time-frequency associated multiple signal classification(MUSIC)al-gorithm which is suitable for through-wall detection is proposed.The technology of detecting hu-man targets by through-wall radar can be used to monitor the status and the location information of human targets behind the wall.However,the detection is out of order when classical MUSIC al-gorithm is applied to estimate the direction of arrival.In order to solve the problem,a time-fre-quency associated MUSIC algorithm suitable for through-wall detection and based on S-band stepped frequency continuous wave(SFCW)radar is researched.By associating inverse fast Fouri-er transform(IFFT)algorithm with MUSIC algorithm,the power enhancement of the target sig-nal is completed according to the distance calculation results in the time domain.Then convert the signal to the frequency domain for direction of arrival(DOA)estimation.The simulations of two-dimensional human target detection in free space and the processing of measured data are com-pleted.By comparing the processing results of the two algorithms on the measured data,accuracy of DOA estimation of proposed algorithm is more than 75%,which is 50%higher than classical MUSIC algorithm.It is verified that the distance and angle of human target can be effectively de-tected via proposed algorithm.展开更多
This paper extends the Non-Circular MUltiple SIgnal Classification(MUSIC)(NC-MUSIC) method for the common array geometries including Uniform Circular Arrays(UCAs) and Uniform Rectangular Arrays(URAs),which enables the...This paper extends the Non-Circular MUltiple SIgnal Classification(MUSIC)(NC-MUSIC) method for the common array geometries including Uniform Circular Arrays(UCAs) and Uniform Rectangular Arrays(URAs),which enables the algorithm to estimate 2-D Direction Of Arrival(DOA).A comparison between UCAs and URAs of NC-MUSIC is made in this paper.The simulations show that the NC-MUSIC method doubles the maximum estimation number of standard MUSIC.Using non-circular signals,the performance of URAs is improved remarkably while the improvement of UCAs is not so significantly.Moreover,the influence of arrays structures on the NC-MUSIC method is discussed.展开更多
Abs Root-MUSIC (MUltiple Signal Classification) is the polynomial rooting form of MUSIC, namely, the spectrum peak searching is resplaced by the polynomial rooting in MUSIC implementation. The coefficients finding o...Abs Root-MUSIC (MUltiple Signal Classification) is the polynomial rooting form of MUSIC, namely, the spectrum peak searching is resplaced by the polynomial rooting in MUSIC implementation. The coefficients finding of the polynomial is the critical problem for Root-MUSIC and its improvements By analyzing the Root-MUSIC algorithm thoughly, the finding method of the polynomial coefficient is deduced and the concrete calculation formula is given, so that the speed of polynomial finding roots will get the bigger exaltation. The particular simulations are given and attest correctness of the theory analysis and also indicate that the proposed algorithm has preferable estimating performance.展开更多
In most literature about joint direction of arrival(DOA) and polarization estimation, the case that sources possess different power levels is seldom discussed. However, this case exists widely in practical applicati...In most literature about joint direction of arrival(DOA) and polarization estimation, the case that sources possess different power levels is seldom discussed. However, this case exists widely in practical applications, especially in passive radar systems. In this paper, we propose a joint DOA and polarization estimation method for unequal power sources based on the reconstructed noise subspace. The invariance property of noise subspace(IPNS) to power of sources has been proved an effective method to estimate DOA of unequal power sources. We develop the IPNS method for joint DOA and polarization estimation based on a dual polarized array. Moreover, we propose an improved IPNS method based on the reconstructed noise subspace, which has higher resolution probability than the IPNS method. It is theoretically proved that the IPNS to power of sources is still valid when the eigenvalues of the noise subspace are changed artificially. Simulation results show that the resolution probability of the proposed method is enhanced compared with the methods based on the IPNS and the polarimetric multiple signal classification(MUSIC) method. Meanwhile, the proposed method has approximately the same estimation accuracy as the IPNS method for the weak source.展开更多
Microphone array can be used in sound source localization and separation. But gain, phase, and position errors can seriously influence the performance of localization algorithms such as multiple signal classification ...Microphone array can be used in sound source localization and separation. But gain, phase, and position errors can seriously influence the performance of localization algorithms such as multiple signal classification (MUSIC) algorithm. In this paper, a new calibration method for microphone array with gain, phase, and position errors is proposed. Unlike traditional calibration methods for antenna array, the proposed method can be used in the broadband and near-field signal model such as microphone array with arbitrary sensor geometries in one plane. Computer simulations are presented and simulation results show the new method having good performance.展开更多
This paper addresses the problem of channel estimation in a multiuser multi-cell wireless communications system in which the base station(BS)is equipped with a very large number of antennas(also referred to as"ma...This paper addresses the problem of channel estimation in a multiuser multi-cell wireless communications system in which the base station(BS)is equipped with a very large number of antennas(also referred to as"massive multiple-input multiple-output(MIMO)").We consider a time-division duplexing(TDD)scheme,in which reciprocity between the uplink and downlink channels can be assumed.Channel estimation is essential for downlink beamforming in massive MIMO,nevertheless,the pilot contamination effect hinders accurate channel estimation,which leads to overall performance degradation.Benefitted from the asymptotic orthogonality between signal and interference subspaces for non-overlapping angle-of arrivals(AOAs)in the large-scale antenna system,we propose a multiple signals classification(MUSIC)based channel estimation algorithm during the uplink transmission.Analytical and numerical results verify complete pilot decontamination and the effectiveness of the proposed channel estimation algorithm in the multiuser multi-cell massive MIMO system.展开更多
The performance of multiple signal classification (MUSIC) algorithm with regard to solving closely spaced direction of arrivals (DOAs) depends strongly upon the signal-to-noise ratio (SNR) and snapshots. In orde...The performance of multiple signal classification (MUSIC) algorithm with regard to solving closely spaced direction of arrivals (DOAs) depends strongly upon the signal-to-noise ratio (SNR) and snapshots. In order to solve this problem, a method by reconstructing the spatial spectrum function with both noise subspace and signal subspace is presented in this paper. The key idea is to apply the full information contained in covariance matrix and change the projection weights of steering vector on the noise and signal subspace by their revised eigenvalues, respectively. Comparing with the MUSIC algorithm, it does not increase any computational complexity either, and remarkably, it has the advantages of simultaneously reducing noise and keeping the high-resolution ability under low SNR and small sample sized scenarios. Simulation and experiment results are included to demonstrate the superior performance of the proposed algorithm.展开更多
We propose a Taylor expansion multiple signal classification(TE MUSIC) method for joint direction of departure(DOD) and direction of arrival(DOA) estimation in a bistatic multiple-input multiple-output(MIMO)array. Fir...We propose a Taylor expansion multiple signal classification(TE MUSIC) method for joint direction of departure(DOD) and direction of arrival(DOA) estimation in a bistatic multiple-input multiple-output(MIMO)array. First, using a Taylor expansion of the steering vector, a two-dimensional(2D) search in the conventional MUSIC method for MIMO arrays is reduced to a two-step one-dimensional(1D) search in the proposed TE MUSIC method. Second, DOAs of the targets can be achieved via Lagrange multiplier by a 1D search. Finally, substituting the DOA estimates into the 2D MUSIC spectrum function, DODs of the targets are obtained by another 1D search.Thus, the DOD and DOA estimates can be automatically paired. The performance of the proposed method is better than that of the MIMO ESPRIT method, and is similar to that of the 2D MUSIC method. Furthermore, due to the 1D search, the TE MUSIC method avoids the high computational complexity of the 2D MUSIC method. Simulation results are presented to show the effectiveness of the proposed method.展开更多
The frequency offset and channel gain estimation problem for multiple-input multiple-output(MIMO)systems in the case of flat-fading channels is addressed.Based on the multiple signal classification(MUSIC)and the maxim...The frequency offset and channel gain estimation problem for multiple-input multiple-output(MIMO)systems in the case of flat-fading channels is addressed.Based on the multiple signal classification(MUSIC)and the maximum likelihood(ML)methods,a new joint estimation algorithm of frequency offsets and channel gains is proposed.The new algorithm has three steps.A subset of frequency offsets is first estimated with the MUSIC algorithm.All frequency offsets in the subset are then identified with the ML method.Finally,channel gains are calculated with the ML estimator.The algorithm is a one-dimensional search scheme and therefore greatly decreases the complexity of joint ML estimation,which is essentially a multi-dimensional search scheme.展开更多
基金supported by the National Natural Science Foundation of China(6137116961301108+1 种基金61071164)the Fundamental Research Funds for the Central Universities(NS2013024)
文摘The problem of channel estimation for multiple an- tenna orthogonal frequency division multiplexing (OFDM) systems subject to unknown carrier frequency offset (CFO) is addressed. Multiple signal classification (MUSIC)-Iike algorithm, which generally has been used for direction estimation or frequency estimation, is used for channel estimation in multiple antenna OFDM systems. A reduced dimensional (RD)-MUSIC based algorithm for channel estimation is proposed in multiple antenna OFDM systems with unknown CFO. The Cramer-Rao bound (CRB) of channel estimation in multiple antenna OFDM systems with unknown CFO is derived. The proposed algorithm has a superior performance of channel estimation compared with the Capon method and the least squares method.
基金supported by the National Natural Science Foundation of China(6117119761371045+2 种基金61201307)the Shandong Provincial Natural Science Foundation(ZR2011FM005)the Shandong Provincial Promotive Research Fund for Excellent Young and Middle-aged Scientists(BS2010DX001)
文摘This paper addresses the issue of the direction of arrival (DOA) estimation under the compressive sampling (CS) framework. A novel approach, modified multiple signal classification (MMUSIC) based on the CS array (CSA-MMUSIC), is proposed to resolve the DOA estimation of correlated signals and two closely adjacent signals. By using two random CS matrices, a large size array is compressed into a small size array, which effectively reduces the number of the front end circuit. The theoretical analysis demonstrates that the proposed approach has the advantages of low computational complexity and hardware structure compared to other MMUSIC approaches. Simulation results show that CSAMMUSIC can possess similar angular resolution as MMUSIC.
基金supported by the National Natural Science Foundation of China(6192100162022091)the Natural Science Foundation of Hunan Province(2017JJ3368).
文摘In this paper,we propose a beam space coversion(BSC)-based approach to achieve a single near-field signal local-ization under uniform circular array(UCA).By employing the centro-symmetric geometry of UCA,we apply BSC to extract the two-dimensional(2-D)angles of near-field signal in the Van-dermonde form,which allows for azimuth and elevation angle estimation by utilizing the improved estimation of signal para-meters via rotational invariance techniques(ESPRIT)algorithm.By substituting the calculated 2-D angles into the direction vec-tor of near-field signal,the range parameter can be conse-quently obtained by the 1-D multiple signal classification(MU-SIC)method.Simulations demonstrate that the proposed al-gorithm can achieve a single near-field signal localization,which can provide satisfactory performance and reduce computational complexity.
基金Supported by the National Natural Science Foundation of China (No.60172028).
文摘A fast MUltiple SIgnal Classification (MUSIC) spectrum peak search algorithm is devised, which regards the power of the MUSIC spectrum function as target distribution up to a constant of proportionality, and uses Metropolis-Hastings (MH) sampler, one of the most popular Markov Chain Monte Carlo (MCMC) techniques, to sample from it. The proposed method reduces greatly the tremendous computation and storage costs in conventional MUSIC techniques i.e., about two and four orders of magnitude in computation and storage costs under the conditions of the experiment in the paper respectively.
基金supported by the National Natural Science Foundation of China (61871146,61622107)the China Scholarship Council(201906120113)。
文摘Cross-range scaling plays an important role in the inverse synthetic aperture radar(ISAR) imaging. Many of the published cross-range scaling algorithms are based on the fast Fourier transformation(FFT). However, the FFT technique is resolution limited, so that the FFT-based algorithms will fail in the rotation velocity(RV) estimation of the slow rotation target. In this paper,we propose an accurate cross-range scaling algorithm based on the multiple signal classification(MUSIC) method. We first select some range bins with the mono-component linear frequency modulated(LFM) signal model. Then, we dechirp the signal of each selected range bin into the form of sinusoidal signal, and utilize the super-resolution MUSIC technique to accurately estimate the frequency. After processing all the range bins, a linear relationship related to the RV can be obtained. Eventually, the ISAR image can be scaled. The proposal can precisely estimate the small RV of the slow rotation target with low computational complexity. Furthermore, the proposal can also be used in the case of cross-range scaling for the sparse aperture data. Experimental results with the simulated and raw data validate the superiority of the novel method.
基金supported by the National Natural Science Foundation of China(6130127161331007)+2 种基金the Specialized Research Fund for the Doctoral Program of Higher Education of China(2011018512000820120185130001)the Fundamental Research Funds for Central Universities(ZYGX2012J043)
文摘An efficient hybrid time reversal(TR) imaging method based on signal subspace and noise subspace is proposed for electromagnetic superresolution detecting and imaging. First, the locations of targets are estimated by the transmitting-mode decomposition of the TR operator(DORT) method employing the signal subspace. Then, the TR multiple signal classification(TR-MUSIC)method employing the noise subspace is used in the estimated target area to get the superresolution imaging of targets. Two examples with homogeneous and inhomogeneous background mediums are considered, respectively. The results show that the proposed hybrid method has advantages in CPU time and memory cost because of the combination of rough and fine imaging.
基金supported by the National Natural Science Foundation of China(62031015).
文摘This paper examines the direction of arrival(DOA)estimation for polarized signals impinging on a sparse vector sensor array which is based on the maximum interelement spacing constraint(MISC).The vector array effectively utilizes the polarization domain information of incident signals,and the quaternion model is adopted for signals polarization characteristic maintenance and computational burden reduction.The features of MISC arrays are crucial to the mutual coupling effects reduction and higher degrees of freedom(DOFs).The quaternion data model based on vector MISC arrays is established,which extends the scalar MISC array into the vector MISC array.Based on the model,a quaternion multiple signal classification(MUSIC)algorithm based on vector MISC arrays is proposed for DOA estimation.The algorithm combines the advantages of the quaternion model and the vector MISC array to enhance the DOA estimation performance.Analytical simulations are performed to certify the capability of the algorithm.
基金supported by the National Natural Science Foundation of China(61501142)the Shandong Provincial Natural Science Foundation(ZR2014FQ003)+1 种基金the Special Foundation of China Postdoctoral Science(2016T90289)the China Postdoctoral Science Foundation(2015M571414)
文摘The root multiple signal classification(root-MUSIC) algorithm is one of the most important techniques for direction of arrival(DOA) estimation. Using a uniform linear array(ULA) composed of M sensors, this method usually estimates L signal DOAs by finding roots that lie closest to the unit circle of a(2M-1)-order polynomial, where L 〈 M. A novel efficient root-MUSIC-based method for direction estimation is presented, in which the order of polynomial is efficiently reduced to 2L. Compared with the unitary root-MUSIC(U-root-MUSIC) approach which involves real-valued computations only in the subspace decomposition stage, both tasks of subspace decomposition and polynomial rooting are implemented with real-valued computations in the new technique,which hence shows a significant efficiency advantage over most state-of-the-art techniques. Numerical simulations are conducted to verify the correctness and efficiency of the new estimator.
文摘In this paper,a time-frequency associated multiple signal classification(MUSIC)al-gorithm which is suitable for through-wall detection is proposed.The technology of detecting hu-man targets by through-wall radar can be used to monitor the status and the location information of human targets behind the wall.However,the detection is out of order when classical MUSIC al-gorithm is applied to estimate the direction of arrival.In order to solve the problem,a time-fre-quency associated MUSIC algorithm suitable for through-wall detection and based on S-band stepped frequency continuous wave(SFCW)radar is researched.By associating inverse fast Fouri-er transform(IFFT)algorithm with MUSIC algorithm,the power enhancement of the target sig-nal is completed according to the distance calculation results in the time domain.Then convert the signal to the frequency domain for direction of arrival(DOA)estimation.The simulations of two-dimensional human target detection in free space and the processing of measured data are com-pleted.By comparing the processing results of the two algorithms on the measured data,accuracy of DOA estimation of proposed algorithm is more than 75%,which is 50%higher than classical MUSIC algorithm.It is verified that the distance and angle of human target can be effectively de-tected via proposed algorithm.
文摘This paper extends the Non-Circular MUltiple SIgnal Classification(MUSIC)(NC-MUSIC) method for the common array geometries including Uniform Circular Arrays(UCAs) and Uniform Rectangular Arrays(URAs),which enables the algorithm to estimate 2-D Direction Of Arrival(DOA).A comparison between UCAs and URAs of NC-MUSIC is made in this paper.The simulations show that the NC-MUSIC method doubles the maximum estimation number of standard MUSIC.Using non-circular signals,the performance of URAs is improved remarkably while the improvement of UCAs is not so significantly.Moreover,the influence of arrays structures on the NC-MUSIC method is discussed.
基金Supported by the National Outstanding Young Foundation (No.60825104)the National Natural Science Foundation of China (No.60736009)
文摘Abs Root-MUSIC (MUltiple Signal Classification) is the polynomial rooting form of MUSIC, namely, the spectrum peak searching is resplaced by the polynomial rooting in MUSIC implementation. The coefficients finding of the polynomial is the critical problem for Root-MUSIC and its improvements By analyzing the Root-MUSIC algorithm thoughly, the finding method of the polynomial coefficient is deduced and the concrete calculation formula is given, so that the speed of polynomial finding roots will get the bigger exaltation. The particular simulations are given and attest correctness of the theory analysis and also indicate that the proposed algorithm has preferable estimating performance.
基金supported by the National Natural Science Foundation of China(61501142)the China Postdoctoral Science Foundation(2015M571414)+3 种基金the Fundamental Research Funds for the Central Universities(HIT.NSRIF.2016102)Shandong Provincial Natural Science Foundation(ZR2014FQ003)the Natural Scientific Research Innovation Foundation in Harbin Institute of Technology(HIT.NSRIF 2013130HIT(WH)XBQD 201022)
文摘In most literature about joint direction of arrival(DOA) and polarization estimation, the case that sources possess different power levels is seldom discussed. However, this case exists widely in practical applications, especially in passive radar systems. In this paper, we propose a joint DOA and polarization estimation method for unequal power sources based on the reconstructed noise subspace. The invariance property of noise subspace(IPNS) to power of sources has been proved an effective method to estimate DOA of unequal power sources. We develop the IPNS method for joint DOA and polarization estimation based on a dual polarized array. Moreover, we propose an improved IPNS method based on the reconstructed noise subspace, which has higher resolution probability than the IPNS method. It is theoretically proved that the IPNS to power of sources is still valid when the eigenvalues of the noise subspace are changed artificially. Simulation results show that the resolution probability of the proposed method is enhanced compared with the methods based on the IPNS and the polarimetric multiple signal classification(MUSIC) method. Meanwhile, the proposed method has approximately the same estimation accuracy as the IPNS method for the weak source.
基金This work was supported by the Key Project of Science and Technology of Sichuan Province under Grant No. 04GG21-02-20.
文摘Microphone array can be used in sound source localization and separation. But gain, phase, and position errors can seriously influence the performance of localization algorithms such as multiple signal classification (MUSIC) algorithm. In this paper, a new calibration method for microphone array with gain, phase, and position errors is proposed. Unlike traditional calibration methods for antenna array, the proposed method can be used in the broadband and near-field signal model such as microphone array with arbitrary sensor geometries in one plane. Computer simulations are presented and simulation results show the new method having good performance.
文摘This paper addresses the problem of channel estimation in a multiuser multi-cell wireless communications system in which the base station(BS)is equipped with a very large number of antennas(also referred to as"massive multiple-input multiple-output(MIMO)").We consider a time-division duplexing(TDD)scheme,in which reciprocity between the uplink and downlink channels can be assumed.Channel estimation is essential for downlink beamforming in massive MIMO,nevertheless,the pilot contamination effect hinders accurate channel estimation,which leads to overall performance degradation.Benefitted from the asymptotic orthogonality between signal and interference subspaces for non-overlapping angle-of arrivals(AOAs)in the large-scale antenna system,we propose a multiple signals classification(MUSIC)based channel estimation algorithm during the uplink transmission.Analytical and numerical results verify complete pilot decontamination and the effectiveness of the proposed channel estimation algorithm in the multiuser multi-cell massive MIMO system.
基金supported by the National Basic Research Program of China (61393010101-1)
文摘The performance of multiple signal classification (MUSIC) algorithm with regard to solving closely spaced direction of arrivals (DOAs) depends strongly upon the signal-to-noise ratio (SNR) and snapshots. In order to solve this problem, a method by reconstructing the spatial spectrum function with both noise subspace and signal subspace is presented in this paper. The key idea is to apply the full information contained in covariance matrix and change the projection weights of steering vector on the noise and signal subspace by their revised eigenvalues, respectively. Comparing with the MUSIC algorithm, it does not increase any computational complexity either, and remarkably, it has the advantages of simultaneously reducing noise and keeping the high-resolution ability under low SNR and small sample sized scenarios. Simulation and experiment results are included to demonstrate the superior performance of the proposed algorithm.
基金the National Natural Science Foundation of China (Nos. 61501374 and 61531015)the Fundamental Research Funds for the Central Universities, China (No. 3102015ZY084)the Project of Science and Technology on Electronic Information Control Laboratory, China.
文摘We propose a Taylor expansion multiple signal classification(TE MUSIC) method for joint direction of departure(DOD) and direction of arrival(DOA) estimation in a bistatic multiple-input multiple-output(MIMO)array. First, using a Taylor expansion of the steering vector, a two-dimensional(2D) search in the conventional MUSIC method for MIMO arrays is reduced to a two-step one-dimensional(1D) search in the proposed TE MUSIC method. Second, DOAs of the targets can be achieved via Lagrange multiplier by a 1D search. Finally, substituting the DOA estimates into the 2D MUSIC spectrum function, DODs of the targets are obtained by another 1D search.Thus, the DOD and DOA estimates can be automatically paired. The performance of the proposed method is better than that of the MIMO ESPRIT method, and is similar to that of the 2D MUSIC method. Furthermore, due to the 1D search, the TE MUSIC method avoids the high computational complexity of the 2D MUSIC method. Simulation results are presented to show the effectiveness of the proposed method.
基金supported by the National Science Fund for Distinguished Young Scholars (No.60725105)the National Basic Research Program of China (No.2009CB320404)+4 种基金the National Natural Science Foundation of China (Grant No.60572146)The Research Fund for the Doctoral Program of Higher Education (No.20050701007)the Fund of Teaching and Research Award Program for Outstanding Young Teachers in Higher Education Institute of Chinathe Key Project of Science and Technologies Research of MOE (No.107103)the 111 Project (B08038).
文摘The frequency offset and channel gain estimation problem for multiple-input multiple-output(MIMO)systems in the case of flat-fading channels is addressed.Based on the multiple signal classification(MUSIC)and the maximum likelihood(ML)methods,a new joint estimation algorithm of frequency offsets and channel gains is proposed.The new algorithm has three steps.A subset of frequency offsets is first estimated with the MUSIC algorithm.All frequency offsets in the subset are then identified with the ML method.Finally,channel gains are calculated with the ML estimator.The algorithm is a one-dimensional search scheme and therefore greatly decreases the complexity of joint ML estimation,which is essentially a multi-dimensional search scheme.