期刊文献+
共找到1,912篇文章
< 1 2 96 >
每页显示 20 50 100
Multiple model PHD filter for tracking sharply maneuvering targets using recursive RANSAC based adaptive birth estimation
1
作者 DING Changwen ZHOU Di +2 位作者 ZOU Xinguang DU Runle LIU Jiaqi 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第3期780-792,共13页
An algorithm to track multiple sharply maneuvering targets without prior knowledge about new target birth is proposed. These targets are capable of achieving sharp maneuvers within a short period of time, such as dron... An algorithm to track multiple sharply maneuvering targets without prior knowledge about new target birth is proposed. These targets are capable of achieving sharp maneuvers within a short period of time, such as drones and agile missiles.The probability hypothesis density (PHD) filter, which propagates only the first-order statistical moment of the full target posterior, has been shown to be a computationally efficient solution to multitarget tracking problems. However, the standard PHD filter operates on the single dynamic model and requires prior information about target birth distribution, which leads to many limitations in terms of practical applications. In this paper,we introduce a nonzero mean, white noise turn rate dynamic model and generalize jump Markov systems to multitarget case to accommodate sharply maneuvering dynamics. Moreover, to adaptively estimate newborn targets’information, a measurement-driven method based on the recursive random sampling consensus (RANSAC) algorithm is proposed. Simulation results demonstrate that the proposed method achieves significant improvement in tracking multiple sharply maneuvering targets with adaptive birth estimation. 展开更多
关键词 multitarget tracking probability hypothesis density(PHD)filter sharply maneuvering targets multiple model adaptive birth intensity estimation
下载PDF
Maneuvering target tracking using threshold interacting multiple model algorithm
2
作者 徐迈 山秀明 徐保国 《Journal of Southeast University(English Edition)》 EI CAS 2005年第4期440-444,共5页
To avoid missing track caused by the target maneuvers in automatic target tracking system, a new maneuvering target tracking technique called threshold interacting multiple model (TIMM) is proposed. This algorithm i... To avoid missing track caused by the target maneuvers in automatic target tracking system, a new maneuvering target tracking technique called threshold interacting multiple model (TIMM) is proposed. This algorithm is based on the interacting multiple model (IMM) method and applies a threshold controller to improve tracking accuracy. It is also applicable to other advanced algorithms of IMM. In this research, we also compare the position and velocity root mean square (RMS) errors of TIMM and IMM algorithms with two different examples. Simulation results show that the TIMM algorithm is superior to the traditional IMM alzorithm in estimation accuracy. 展开更多
关键词 maneuvering target tracking Kalman filter interacting multiple model (IMM) threshold interacting multiple model (TIMM)
下载PDF
Fast density peak-based clustering algorithm for multiple extended target tracking 被引量:3
3
作者 SHEN Xinglin SONG Zhiyong +1 位作者 FAN Hongqi FU Qiang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第3期435-447,共13页
The key challenge of the extended target probability hypothesis density (ET-PHD) filter is to reduce the computational complexity by using a subset to approximate the full set of partitions. In this paper, the influen... The key challenge of the extended target probability hypothesis density (ET-PHD) filter is to reduce the computational complexity by using a subset to approximate the full set of partitions. In this paper, the influence for the tracking results of different partitions is analyzed, and the form of the most informative partition is obtained. Then, a fast density peak-based clustering (FDPC) partitioning algorithm is applied to the measurement set partitioning. Since only one partition of the measurement set is used, the ET-PHD filter based on FDPC partitioning has lower computational complexity than the other ET-PHD filters. As FDPC partitioning is able to remove the spatially close clutter-generated measurements, the ET-PHD filter based on FDPC partitioning has good tracking performance in the scenario with more clutter-generated measurements. The simulation results show that the proposed algorithm can get the most informative partition and obviously reduce computational burden without losing tracking performance. As the number of clutter-generated measurements increased, the ET-PHD filter based on FDPC partitioning has better tracking performance than other ET-PHD filters. The FDPC algorithm will play an important role in the engineering realization of the multiple extended target tracking filter. 展开更多
关键词 FAST DENSITY peak-based clustering (FDPC) multiple extended target partition probability hypothesis DENSITY (PHD) filter track.
下载PDF
Efficient 2-D MUSIC algorithm for super-resolution moving target tracking based on an FMCW radar
4
作者 Xuchong Yi Shuangxi Zhang Yuxuan Zhou 《Geodesy and Geodynamics》 EI CSCD 2024年第5期504-515,共12页
Frequency modulated continuous wave(FMCW)radar is an advantageous sensor scheme for target estimation and environmental perception.However,existing algorithms based on discrete Fourier transform(DFT),multiple signal c... Frequency modulated continuous wave(FMCW)radar is an advantageous sensor scheme for target estimation and environmental perception.However,existing algorithms based on discrete Fourier transform(DFT),multiple signal classification(MUSIC)and compressed sensing,etc.,cannot achieve both low complexity and high resolution simultaneously.This paper proposes an efficient 2-D MUSIC algorithm for super-resolution target estimation/tracking based on FMCW radar.Firstly,we enhance the efficiency of 2-D MUSIC azimuth-range spectrum estimation by incorporating 2-D DFT and multi-level resolution searching strategy.Secondly,we apply the gradient descent method to tightly integrate the spatial continuity of object motion into spectrum estimation when processing multi-epoch radar data,which improves the efficiency of continuous target tracking.These two approaches have improved the algorithm efficiency by nearly 2-4 orders of magnitude without losing accuracy and resolution.Simulation experiments are conducted to validate the effectiveness of the algorithm in both single-epoch estimation and multi-epoch tracking scenarios. 展开更多
关键词 2D-MUSIC FMCW radar Moving target tracking SUPER-RESOLUTION algorithm optimization
下载PDF
WSN Mobile Target Tracking Based on Improved Snake-Extended Kalman Filtering Algorithm
5
作者 Duo Peng Kun Xie Mingshuo Liu 《Journal of Beijing Institute of Technology》 EI CAS 2024年第1期28-40,共13页
A wireless sensor network mobile target tracking algorithm(ISO-EKF)based on improved snake optimization algorithm(ISO)is proposed to address the difficulty of estimating initial values when using extended Kalman filte... A wireless sensor network mobile target tracking algorithm(ISO-EKF)based on improved snake optimization algorithm(ISO)is proposed to address the difficulty of estimating initial values when using extended Kalman filtering to solve the state of nonlinear mobile target tracking.First,the steps of extended Kalman filtering(EKF)are introduced.Second,the ISO is used to adjust the parameters of the EKF in real time to adapt to the current motion state of the mobile target.Finally,the effectiveness of the algorithm is demonstrated through filtering and tracking using the constant velocity circular motion model(CM).Under the specified conditions,the position and velocity mean square error curves are compared among the snake optimizer(SO)-EKF algorithm,EKF algorithm,and the proposed algorithm.The comparison shows that the proposed algorithm reduces the root mean square error of position by 52%and 41%compared to the SOEKF algorithm and EKF algorithm,respectively. 展开更多
关键词 wireless sensor network(WSN)target tracking snake optimization algorithm extended Kalman filter maneuvering target
下载PDF
Multiple extended target tracking algorithm based on Gaussian surface matrix 被引量:2
6
作者 Jinlong Yang Peng Li +1 位作者 Zhihua Li Le Yang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第2期279-289,共11页
In this paper, we consider the problem of irregular shapes tracking for multiple extended targets by introducing the Gaussian surface matrix(GSM) into the framework of the random finite set(RFS) theory. The Gaussi... In this paper, we consider the problem of irregular shapes tracking for multiple extended targets by introducing the Gaussian surface matrix(GSM) into the framework of the random finite set(RFS) theory. The Gaussian surface function is constructed first by the measurements, and it is used to define the GSM via a mapping function. We then integrate the GSM with the probability hypothesis density(PHD) filter, the Bayesian recursion formulas of GSM-PHD are derived and the Gaussian mixture implementation is employed to obtain the closed-form solutions. Moreover, the estimated shapes are designed to guide the measurement set sub-partition, which can cope with the problem of the spatially close target tracking. Simulation results show that the proposed algorithm can effectively estimate irregular target shapes and exhibit good robustness in cross extended target tracking. 展开更多
关键词 multiple extended target tracking irregular shape Gaussian surface matrix(GSM) probability hypothesis density(PHD)
下载PDF
Tracking Target Identification Model Based on Multiple Algorithms
7
作者 Ma Ding 《International Journal of Technology Management》 2013年第2期68-72,共5页
In view of current situation of bad data synchronization, image blurring and tracking station stability in tracking target identification, a kind of tracking target identification model based on multiple algorithms wa... In view of current situation of bad data synchronization, image blurring and tracking station stability in tracking target identification, a kind of tracking target identification model based on multiple algorithms was put forward, firstly establishing the image degradation model, using the wavelet algorithm for image preprocessing, doing image edge segmentation by using Robert algorithm after pretreatment, then using the maximum variance threshold method for image threshold segmentation, then extracting target features from the segmented image, and finally using the ABS algorithm to finish target tracking. Experiments proved the proposed model practical and effective. 展开更多
关键词 Robert algorithm image degradation largest variance threshold method ABS algorithm target tracking
下载PDF
Target Tracking Using the Interactive Multiple Model Method 被引量:6
8
作者 张劲松 杨位钦 胡士强 《Journal of Beijing Institute of Technology》 EI CAS 1998年第3期299-304,共6页
Aim To develop a practical target tracking algorithm for different motion modes. Methods After creation of the new model, it was implemented by computer simulation to prove its performance and compared with the of... Aim To develop a practical target tracking algorithm for different motion modes. Methods After creation of the new model, it was implemented by computer simulation to prove its performance and compared with the often-used current statistical model. Results The simulation results show that the new IMM (interactive multiple model) have low tracking error in both maneuVering segment and non^Inaneuwi segment while the current statistical model bas muCh higher tracking error in non-maneuvering segment. Conclusion In the point of trackintaccuracy, the new IMM method is much better than the current acceleration method. It can develop into a practical target hacking method. 展开更多
关键词 interactive multiple model tracking maneuvering target Kalman filter
下载PDF
A multiple template approach for robust tracking of fast motion target 被引量:6
9
作者 SUN Jun HE Fa-zhi +1 位作者 CHEN Yi-lin CHEN Xiao 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2016年第2期177-197,共21页
Target tracking is very important in computer vision and related areas. It is usually difficult to accurately track fast motion target with appearance variations. Sometimes the tracking algorithms fail for heavy appea... Target tracking is very important in computer vision and related areas. It is usually difficult to accurately track fast motion target with appearance variations. Sometimes the tracking algorithms fail for heavy appearance variations. A multiple template method to track fast motion target with appearance changes is presented under the framework of appearance model with Kalman filter. Firstly, we construct a multiple template appearance model, which includes both the original template and templates affinely transformed from original one. Generally speaking, appearance variations of fast motion target can be covered by affine transformation. Therefore, the affine tr templates match the target of appearance variations better than conventional models. Secondly, we present an improved Kalman filter for approx- imate estimating the motion trail of the target and a modified similarity evaluation function for exact matching. The estimation approach can reduce time complexity of the algorithm and keep accuracy in the meantime. Thirdly, we propose an adaptive scheme for updating template set to alleviate the drift problem. The scheme considers the following differences: the weight differences in two successive frames; different types of affine transformation applied to templates. Finally, experiments demonstrate that the proposed algorithm is robust to appearance varia- tion of fast motion target and achieves real-time performance on middle/low-range computing platform. 展开更多
关键词 target tracking Fast motion target multiple template match Kalman filter forecast.
下载PDF
Labeled box-particle CPHD filter for multiple extended targets tracking 被引量:4
10
作者 ZOU Zhibin SONG Liping CHENG Xuan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第1期57-67,共11页
In multiple extended targets tracking, replacing traditional multiple measurements with a rectangular region of the nonzero volume in the state space inspired by the box-particle idea is exactly suitable to deal with ... In multiple extended targets tracking, replacing traditional multiple measurements with a rectangular region of the nonzero volume in the state space inspired by the box-particle idea is exactly suitable to deal with extended targets, without distinguishing the measurements originating from the true targets or clutter.Based on our recent work on extended box-particle probability hypothesis density(ET-BP-PHD) filter, we propose the extended labeled box-particle cardinalized probability hypothesis density(ET-LBP-CPHD) filter, which relaxes the Poisson assumptions of the extended target probability hypothesis density(PHD) filter in target numbers, and propagates not only the intensity function but also cardinality distribution. Moreover, it provides the identity of individual target by adding labels to box-particles. The proposed filter can improve the precision of estimating target number meanwhile achieve targets' tracks. The effectiveness and reliability of the proposed algorithm are verified by the simulation results. 展开更多
关键词 EXTENDED target multiple targetS tracking labled boxparticle cardinalized probability HYPOTHESIS density (CPHD).
下载PDF
Method for Underwater Target Tracking Based on an Interacting Multiple Model 被引量:6
11
作者 XU Weiming LIU Yanchun YIN Xiaodong 《Geo-Spatial Information Science》 2008年第3期186-190,共5页
According to the requirements of real-time performance and reliability in underwater maneuvering target tracking as well as clarifying motion features of the underwater target, an interacting multiple model algorithm ... According to the requirements of real-time performance and reliability in underwater maneuvering target tracking as well as clarifying motion features of the underwater target, an interacting multiple model algorithm based on fuzzy logic inference (FIMM) is proposed. Maneuvering patterns of the target are represented by model sets, including the constant velocity model (CA), the Singer mode~, and the nearly constant speed horizontal-turn model (HT) in FIMM technology. The simulation results show that compared to conventional IMM, the reliability and real-time performance of underwater target tracking can be improved by FIMM algorithm. 展开更多
关键词 underwater target tracking interacting multiple model fuzzy logic inference
下载PDF
Multiple Targets Tracking Using Kinematics in Wireless Sensor Networks 被引量:4
12
作者 Akond Ashfaque Ur Rahman Atiqul Islam Mollah Mahmuda Naznin 《Wireless Sensor Network》 2011年第8期263-274,共12页
Target tracking is considered as one of the cardinal applications of a wireless sensor network. Tracking multiple targets is more challenging than tracking a single target in a wireless sensor network due to targets’... Target tracking is considered as one of the cardinal applications of a wireless sensor network. Tracking multiple targets is more challenging than tracking a single target in a wireless sensor network due to targets’ movement in different directions, targets’ speed variations and frequent connectivity failures of low powered sensor nodes. If all the low-powered sensor nodes are kept active in tracking multiple targets coming from different directions of the network, there is high probability of network failure due to wastage of power. It would be more realistic if the tracking area can be reduced so that less number of sensor nodes will be active and therefore, the network will consume less energy. Tracking area can be reduced by using the target’s kinematics. There is almost no method to track multiple targets based on targets’ kinematics. In our paper, we propose a distributed tracking method for tracking multiple targets considering targets’ kinematics. We simulate our method by a sensor network simulator OMNeT++ and empirical results state that our proposed methodology outperforms traditional tracking algorithms. 展开更多
关键词 WIRELESS SENSOR Network multiple targetS tracking target KINEMATICS
下载PDF
Multi-Bernoulli Filter for Tracking Multiple Targets Using Sensor Array 被引量:1
13
作者 ZHANG Guang-pu ZHENG Ce +1 位作者 QIU Long-hao SUN Si-bo 《China Ocean Engineering》 SCIE EI CSCD 2020年第2期245-256,共12页
This paper presents a multi-Bernoulli filter for tracking the direction of arrival(DOAs)of time-varying number of targets using sensor array.Our method operates directly on the measurements of sensor array and does no... This paper presents a multi-Bernoulli filter for tracking the direction of arrival(DOAs)of time-varying number of targets using sensor array.Our method operates directly on the measurements of sensor array and does not require any detection.Firstly,more information is reserved and compared with the after-detection measurements using a finite set of detected points.It can significantly improve the tracking performance,especially in low signal-to-noise ratio.Secondly,it inherits the advantages of the multi-Bernoulli approximation which models each of the targets individually.This allows more accurate multi-target state estimation,especially when targets cross.The proposed filter does not need clustering step and simulation results showcase the improved performance of the proposed filter. 展开更多
关键词 multiple target tracking multi-Bernoulli filter direction of arrival estimation random finite set track-BEFORE-DETECT
下载PDF
Tracking Algorithm Based on Improved Interacting Multiple Model Particle Filter
14
作者 Hailin Feng Juanli Guo 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2019年第3期43-49,共7页
Measurements are always interfered with glint noise in a radar target tracking system, which makes the performance of traditional filtering fall sharply and even divergent.Against this problem, a new Interactive Multi... Measurements are always interfered with glint noise in a radar target tracking system, which makes the performance of traditional filtering fall sharply and even divergent.Against this problem, a new Interactive Multiple Model Particle Filter (IMMPF) algorithm is proposed for target tracking by introducing PF into Interactive Multiple Model (IMM).Different from the general method to select importance density function from PF, the particles are extracted from observation likelihood function within depending on observation noises.Observation noise is modelled, and the latest observation is fused, then the target can be effectively tracked.Finally, the optimized method is simulated with respect to bearings-only tracking of maneuvering target in a glint noise environment.Compared with the existing filtering algorithms, it turns out that the developed filtering algorithm is more efficient and closer to the real-time tracking requirement of high maneuvering targets. 展开更多
关键词 OBSERVATION noise INTERACTIVE multiple model target tracking PARTICLE FILTER
下载PDF
Target Tracking Algorithm Based on Meanshift and Kalman Filter 被引量:4
15
作者 Hua Li Jia Zhu 《Journal of Beijing Institute of Technology》 EI CAS 2019年第2期365-370,共6页
Directed at the problem of occlusion in target tracking,a new improved algorithm based on the Meanshift algorithm and Kalman filter is proposed.The algorithm effectively combines the Meanshift algorithm with the Kalma... Directed at the problem of occlusion in target tracking,a new improved algorithm based on the Meanshift algorithm and Kalman filter is proposed.The algorithm effectively combines the Meanshift algorithm with the Kalman filtering algorithm to determine the position of the target centroid and subsequently adjust the current search window adaptively according to the target centroid position and the previous frame search window boundary.The derived search window is more closely matched to the location of the target,which improves the accuracy and reliability of tracking.The environmental influence and other influencing factors on the algorithm are also reduced.Through comparison and analysis of the experiments,the modified algorithm demonstrates good stability and adaptability,and can effectively solve the problem of large area occlusion and similar interference. 展开更多
关键词 target tracking MEANSHIFT algorithm KALMAN algorithm
下载PDF
Maneuvering target tracking algorithm based on cubature Kalman filter with observation iterated update 被引量:4
16
作者 胡振涛 Fu Chunling +1 位作者 Cao Zhiwei Li Congcong 《High Technology Letters》 EI CAS 2015年第1期39-45,共7页
Reasonable selection and optimization of a filter used in model estimation for a multiple model structure is the key to improve tracking accuracy of maneuvering target.Combining with the cubature Kalman filter with it... Reasonable selection and optimization of a filter used in model estimation for a multiple model structure is the key to improve tracking accuracy of maneuvering target.Combining with the cubature Kalman filter with iterated observation update and the interacting multiple model method,a novel interacting multiple model algorithm based on the cubature Kalman filter with observation iterated update is proposed.Firstly,aiming to the structural features of cubature Kalman filter,the cubature Kalman filter with observation iterated update is constructed by the mechanism of iterated observation update.Secondly,the improved cubature Kalman filter is used as the model filter of interacting multiple model,and the stability and reliability of model identification and state estimation are effectively promoted by the optimization of model filtering step.In the simulations,compared with classic improved interacting multiple model algorithms,the theoretical analysis and experimental results show the feasibility and validity of the proposed algorithm. 展开更多
关键词 maneuvering target tracking nonlinear filtering cubature Kalman filter(CKF) interacting multiple model(IMM)
下载PDF
Maneuvering target tracking algorithm based on CDKF in observation bootstrapping strategy 被引量:1
17
作者 胡振涛 Zhang Jin +1 位作者 Fu Chunling Li Xian 《High Technology Letters》 EI CAS 2017年第2期149-155,共7页
The selection and optimization of model filters affect the precision of motion pattern identification and state estimation in maneuvering target tracking directly.Aiming at improving performance of model filters,a nov... The selection and optimization of model filters affect the precision of motion pattern identification and state estimation in maneuvering target tracking directly.Aiming at improving performance of model filters,a novel maneuvering target tracking algorithm based on central difference Kalman filter in observation bootstrapping strategy is proposed.The framework of interactive multiple model(IMM) is used to realize identification of motion pattern,and a central difference Kalman filter(CDKF) is selected as the model filter of IMM.Considering the advantage of multi-sensor fusion method in improving the stability and reliability of observation information,the hardware cost of the observation system for multiple sensors is adopted,meanwhile,according to the data assimilation technique in Ensemble Kalman filter(En KF),a bootstrapping observation set is constructed by integrating the latest observation and the prior information of observation noise.On that basis,these bootstrapping observations are reasonably used to optimize the filtering performance of CDKF by means of weight fusion way.The object of new algorithm is to improve the tracking precision of observed target by the multi-sensor fusion method without increasing the number of physical sensors.The theoretical analysis and experimental results show the feasibility and efficiency of the proposed algorithm. 展开更多
关键词 maneuvering target tracking interacting multiple model(IMM) central difference Kalman filter(CDKF) bootstrapping observation
下载PDF
Dynamic alliance target tracking based on genetic algorithms in wireless sensor networks
18
作者 Zhang Shi Zhang Zhe Zhu Jichang 《China Communications》 SCIE CSCD 2007年第4期55-60,共6页
Dynamic alliance(DA),namely,virtual corporations (VCs),is an enterprise management method. It means a temporary union formed by some independent commercial processes or corporations.Here, genetic algorithms(GA) is app... Dynamic alliance(DA),namely,virtual corporations (VCs),is an enterprise management method. It means a temporary union formed by some independent commercial processes or corporations.Here, genetic algorithms(GA) is applied to the research of nodes DA selection optimization in wireless sensor networks(WSN) target tracking(TT) problem.The detailed optimized selection method is presented in the paper and a typical simulation is conducted to verify the effectiveness of our model. 展开更多
关键词 dynamic ALLIANCE WIRELESS sensor networks GENETIC algorithmS target tracking
下载PDF
Track Association for Dynamic Target Tracking System Based on AP Algorithm
19
作者 储岳中 徐波 高有涛 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2014年第6期643-651,共9页
Track association of multi-target has been recognized as one of the key technologies in distributed multiple-sensor data fusion system,and its accuracy directly impacts on the performance of the whole tracking system.... Track association of multi-target has been recognized as one of the key technologies in distributed multiple-sensor data fusion system,and its accuracy directly impacts on the performance of the whole tracking system.A multi-sensor data association is proposed based on aftinity propagation(AP)algorithm.The proposed method needs an initial similarity,a distance between any two points,as a parameter,therefore,the similarity matrix is calculated by track position,velocity and azimuth of track data.The approach can automatically obtain the optimal classification of uncertain target based on clustering validity index.Furthermore,the same kind of data are fused based on the variance of measured data and the fusion result can be taken as a new measured data of the target.Finally,the measured data are classified to a certain target based on the nearest neighbor ideas and its characteristics,then filtering and target tracking are conducted.The experimental results show that the proposed method can effectively achieve multi-sensor and multi-target track association. 展开更多
关键词 affinity propagation algorithm data fusion target tracking track association
下载PDF
ALGORITHMS FOR TRACKING MANEUVERING TARGET WITH PHASED ARRAY RADAR
20
作者 杨晨阳 毛士艺 李少洪 《Chinese Journal of Aeronautics》 SCIE EI CSCD 1998年第4期42-53,共12页
Several typical algorithms for tracking maneuvering target with phased array radar are studied in this paper. The constant gain filter with multiple models is analyzed. A typical method for adaptively controlling the ... Several typical algorithms for tracking maneuvering target with phased array radar are studied in this paper. The constant gain filter with multiple models is analyzed. A typical method for adaptively controlling the sampling interval is modified. The performance of the single model and multiple model estimator with uniform and variable sampling interval are evaluated and compared. It is shown by the simulation results that it is necessary to apply the adaptive sampling policy based on the multiple model method when the maneuvering targets are tracked by the phased array radar since saving radar resources is more important. The adaptive algorithms of variable sampling interval are better than the algorithms of variable model. The adaptive policy to determine the sampling interval based on multiple model are superior than those based on the single model filter, because IMM estimator can adapt to the maneuver more quickly and the prediction covariance of IMM is the more sensitive and more reliable index than residual to determine the sampling interval. With IMM based method, lower sampling interval is required for a certain accuracy. 展开更多
关键词 phased array radar maneuvering target tracking multiple model estimator adaptive sampling policy
下载PDF
上一页 1 2 96 下一页 到第
使用帮助 返回顶部