The random distribution problem of dendrite preferred growth direction was settled by random grid method.This method was used to study the influence of forced laminar flow effect on multiple grains during solidificati...The random distribution problem of dendrite preferred growth direction was settled by random grid method.This method was used to study the influence of forced laminar flow effect on multiple grains during solidification.Taking high pure succinonitrile (SCN) undercooled melt as an example,the forced laminar flow effect on multiple grains was studied by phase-field model of single grain which coupled with flow equations at non-isothermal condition.The simulation results show that the random grid method can reasonably settle the problem of random distribution and is more effective.When the solid fraction is relatively low,melt particles flow around the downstream side of dendrite,and the flow velocity between two dendrite arms becomes high.At the stage of solidification time less than 1800Δt,every dendrite grows freely;the upstream dendrites are stronger than the downstream ones.The higher the melt flow rate,the higher the solid fraction.However,when the solid fraction is relatively high,the dendrite arm intertwins and only a little residual melt which is not encapsulated can flow;the solid fraction will gradually tend to equal to solid fraction of melt without flow.展开更多
This paper develops a new phase-field model for equiaxed dendrite growth of multiple grains in multicomponent alloys based on the Ginzberg-Landau theory and phase-field model of a single grain. Taking Al-Cu and Al-Cu-...This paper develops a new phase-field model for equiaxed dendrite growth of multiple grains in multicomponent alloys based on the Ginzberg-Landau theory and phase-field model of a single grain. Taking Al-Cu and Al-Cu-Mg alloys for example, it couples the concentration field and simulates the dendrite growth process of multiple grains during isothermal solidification. The result of the simulation shows dendrite competitive growth of multiple grains, and is reapplied to the process of dendrite growth in practical solidification.展开更多
Rice is one of the most important staple food for over half of the world's population,and a substantial increase in productivity and quality of rice grain will be required to feed a growing human population.Grain siz...Rice is one of the most important staple food for over half of the world's population,and a substantial increase in productivity and quality of rice grain will be required to feed a growing human population.Grain size and shape are the two important components contributing to grain yield and quality,because they impact both yield potential and end-use quality.展开更多
基金Project(10964004) supported by the National Natural Science Foundation of ChinaProject(20070731001) supported by Research Fund for the Doctoral Program of China+1 种基金 Project(096RJZA104) supported by the Natural Science Foundation of Gansu Province,ChinaProject(SB14200801) supported by the Doctoral Fund of Lanzhou University of Technology,China
文摘The random distribution problem of dendrite preferred growth direction was settled by random grid method.This method was used to study the influence of forced laminar flow effect on multiple grains during solidification.Taking high pure succinonitrile (SCN) undercooled melt as an example,the forced laminar flow effect on multiple grains was studied by phase-field model of single grain which coupled with flow equations at non-isothermal condition.The simulation results show that the random grid method can reasonably settle the problem of random distribution and is more effective.When the solid fraction is relatively low,melt particles flow around the downstream side of dendrite,and the flow velocity between two dendrite arms becomes high.At the stage of solidification time less than 1800Δt,every dendrite grows freely;the upstream dendrites are stronger than the downstream ones.The higher the melt flow rate,the higher the solid fraction.However,when the solid fraction is relatively high,the dendrite arm intertwins and only a little residual melt which is not encapsulated can flow;the solid fraction will gradually tend to equal to solid fraction of melt without flow.
基金supported by the National Natural Science Foundation of China(Grant No 50804019)Foundation for Doctoral Program of the Ministry of Education of China(Grant No 20070731001)
文摘This paper develops a new phase-field model for equiaxed dendrite growth of multiple grains in multicomponent alloys based on the Ginzberg-Landau theory and phase-field model of a single grain. Taking Al-Cu and Al-Cu-Mg alloys for example, it couples the concentration field and simulates the dendrite growth process of multiple grains during isothermal solidification. The result of the simulation shows dendrite competitive growth of multiple grains, and is reapplied to the process of dendrite growth in practical solidification.
基金supported by grants from the National Natural Science Foundation of China (No.91635302)the National Key Research and Development Program of China (2016YFD0100401)+1 种基金the Chinese Academy of Sciences (XDA08010101)the State Key Laboratory of Plant Cell and Chromosome Engineering (PCCEKF-2017-04)
文摘Rice is one of the most important staple food for over half of the world's population,and a substantial increase in productivity and quality of rice grain will be required to feed a growing human population.Grain size and shape are the two important components contributing to grain yield and quality,because they impact both yield potential and end-use quality.