期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A K-Means Clustering-Based Multiple Importance Sampling Algorithm for Integral Global Optimization
1
作者 Chen Wang Dong-Hua Wu 《Journal of the Operations Research Society of China》 EI CSCD 2023年第1期157-175,共19页
In this paper, we propose a K-means clustering-based integral level-value estimation algorithm to solve a kind of box-constrained global optimization problem. For this purpose, we introduce the generalized variance fu... In this paper, we propose a K-means clustering-based integral level-value estimation algorithm to solve a kind of box-constrained global optimization problem. For this purpose, we introduce the generalized variance function associated with the level-value of the objective function to be minimized. The variance function has a good property when Newton’s method is used to solve a variance equation resulting by setting the variance function to zero. We prove that the largest root of the variance equation is equal to the global minimum value of the corresponding optimization problem. Based on the K-means clustering algorithm, the multiple importance sampling technique is proposed in the implementable algorithm. The main idea of the cross-entropy method is used to update the parameters of sampling density function. The asymptotic convergence of the algorithm is proved, and the validity of the algorithm is verified by numerical experiments. 展开更多
关键词 Global optimization Generalized variance function multiple importance sampling K-means clustering algorithm
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部