For the issue of deterioration in detection performance caused by dynamically changing environment in ultra-wideband(UWB) multiple input multiple output(MIMO) radar, this paper proposes a novel adaptive waveform d...For the issue of deterioration in detection performance caused by dynamically changing environment in ultra-wideband(UWB) multiple input multiple output(MIMO) radar, this paper proposes a novel adaptive waveform design which is aimed to improve the ability of discriminating target and clutter from the radar scene. Firstly, a sequence of Morlet wavelet pulses with frequency hopping and pulse position modulation by Welch-Costas array is designed. Then a waveform optimization solution is proposed which is achieved by applying the minimization mutual-information(MI) strategy. After that, with subsequent iterations of the algorithm, simulation results demonstrate that the optimal waveform design method brings an improvement in the target detection ability in the presence of noise and clutter.展开更多
An achievable rate region for the asynchronous multiple access channel with feedback is established through the use of superposition coding, list decoding and time sharing. The calculation results demonstrate that lac...An achievable rate region for the asynchronous multiple access channel with feedback is established through the use of superposition coding, list decoding and time sharing. The calculation results demonstrate that lack of synchronization does not affect the achievable rate region when the code block length tends to infinity, and that if the length of the code word is finite, especially not sufficiently larger than a fixed maximal delay, the asynchronization will cause a loss of the rate region. The amount of such a loss with its explanation for the reason is given, and the difference between the losses for the asynchronous multiple access channel with and without feedback is also discussed in this paper.展开更多
Thermal decomposition behaviors of TiH_2 powder under a flowing helium atmosphere and in a low vacuum condition have been studied using an in situ EXAFS technique.By an EXAFS analysis containing the multiple scatterin...Thermal decomposition behaviors of TiH_2 powder under a flowing helium atmosphere and in a low vacuum condition have been studied using an in situ EXAFS technique.By an EXAFS analysis containing the multiple scattering paths including H atoms,the changes of the hydrogen stoichiometric ratio and the phase transformation sequence are obtained.The results demonstrate that the initial decomposition temperature is dependent on experimental conditions,which occurs,respectively,at about 300 and 400℃ in a low vacuum condition and under a flowing helium atmosphere.During the decomposition process of TiH_2 in a low vacuum condition,the sample experiences a phase change process:δ(TiH_2)→δ(TiH_x)→δ(TiH_1)+β(TiH_x)→δ(TiH_x)+β(TiH_x)+α(Ti)→β(TiH_x)+α(Ti)→α(Ti)+β(Ti).This study offers a way to detect the structural information of hydrogen.A detailed discussion about the decomposition process of TiH_2 is given in this paper.展开更多
基金supported by the National Natural Science Foundation of China(6107114561271331)
文摘For the issue of deterioration in detection performance caused by dynamically changing environment in ultra-wideband(UWB) multiple input multiple output(MIMO) radar, this paper proposes a novel adaptive waveform design which is aimed to improve the ability of discriminating target and clutter from the radar scene. Firstly, a sequence of Morlet wavelet pulses with frequency hopping and pulse position modulation by Welch-Costas array is designed. Then a waveform optimization solution is proposed which is achieved by applying the minimization mutual-information(MI) strategy. After that, with subsequent iterations of the algorithm, simulation results demonstrate that the optimal waveform design method brings an improvement in the target detection ability in the presence of noise and clutter.
文摘An achievable rate region for the asynchronous multiple access channel with feedback is established through the use of superposition coding, list decoding and time sharing. The calculation results demonstrate that lack of synchronization does not affect the achievable rate region when the code block length tends to infinity, and that if the length of the code word is finite, especially not sufficiently larger than a fixed maximal delay, the asynchronization will cause a loss of the rate region. The amount of such a loss with its explanation for the reason is given, and the difference between the losses for the asynchronous multiple access channel with and without feedback is also discussed in this paper.
基金Supported by National Natural Science Foundation of China(10875143)
文摘Thermal decomposition behaviors of TiH_2 powder under a flowing helium atmosphere and in a low vacuum condition have been studied using an in situ EXAFS technique.By an EXAFS analysis containing the multiple scattering paths including H atoms,the changes of the hydrogen stoichiometric ratio and the phase transformation sequence are obtained.The results demonstrate that the initial decomposition temperature is dependent on experimental conditions,which occurs,respectively,at about 300 and 400℃ in a low vacuum condition and under a flowing helium atmosphere.During the decomposition process of TiH_2 in a low vacuum condition,the sample experiences a phase change process:δ(TiH_2)→δ(TiH_x)→δ(TiH_1)+β(TiH_x)→δ(TiH_x)+β(TiH_x)+α(Ti)→β(TiH_x)+α(Ti)→α(Ti)+β(Ti).This study offers a way to detect the structural information of hydrogen.A detailed discussion about the decomposition process of TiH_2 is given in this paper.