Besides economics and controllability, waste minimization has now become an objective in designing chemical processes, and usually leads to high costs of investment and operation. An attempt was made to minimize waste...Besides economics and controllability, waste minimization has now become an objective in designing chemical processes, and usually leads to high costs of investment and operation. An attempt was made to minimize waste discharged from chemical reaction processes during the design and modification process while the operation conditions were also optimized to meet the requirements of technology and economics. Multiobjectives decision nonlinear programming (NLP) was employed to optimize the operation conditions of a chemical reaction process and reduce waste. A modeling language package-SPEEDUP was used to simulate the process. This paper presents a case study of the benzene production process. The flowsheet factors affecting the economics and waste generation were examined. Constraints were imposed to reduce the number of objectives and carry out optimal calculations easily. After comparisons of all possible solutions, best-compromise approach was applied to meet technological requirements and minimize waste.展开更多
To performance efficient searching for an operator-supervised mobile robot, a multiple objectives route planning approach is proposed considering timeliness and path cost. An improved fitness function for route planni...To performance efficient searching for an operator-supervised mobile robot, a multiple objectives route planning approach is proposed considering timeliness and path cost. An improved fitness function for route planning is proposed based on the multi-objective genetic algorithm (MOGA) for multiple objectives traveling salesman problem (MOTSP). Then, the path between two route nodes is generated based on the heuristic path planning method A *. A simplified timeliness function for route nodes is proposed to represent the timeliness of each node. Based on the proposed timeliness function, experiments are conducted using the proposed two-stage planning method. The experimental results show that the proposed MOGA with improved fitness function can perform the searching function well when the timeliness of the searching task needs to be taken into consideration.展开更多
Cutting parameters have a significant impact on the machining effect.In order to reduce the machining time and improve the machining quality,this paper proposes an optimization algorithm based on Bp neural networkImpr...Cutting parameters have a significant impact on the machining effect.In order to reduce the machining time and improve the machining quality,this paper proposes an optimization algorithm based on Bp neural networkImproved Multi-Objective Particle Swarm(Bp-DWMOPSO).Firstly,this paper analyzes the existing problems in the traditional multi-objective particle swarm algorithm.Secondly,the Bp neural network model and the dynamic weight multi-objective particle swarm algorithm model are established.Finally,the Bp-DWMOPSO algorithm is designed based on the established models.In order to verify the effectiveness of the algorithm,this paper obtains the required data through equal probability orthogonal experiments on a typical Computer Numerical Control(CNC)turning machining case and uses the Bp-DWMOPSO algorithm for optimization.The experimental results show that the Cutting speed is 69.4 mm/min,the Feed speed is 0.05 mm/r,and the Depth of cut is 0.5 mm.The results show that the Bp-DWMOPSO algorithm can find the cutting parameters with a higher material removal rate and lower spindle load while ensuring the machining quality.This method provides a new idea for the optimization of turning machining parameters.展开更多
Recently,reliability-based design is a universal method to quantify negative influence of uncertainty in geotechnical engineering.However,for deep foundation pit,evaluating the system safety of retaining structures an...Recently,reliability-based design is a universal method to quantify negative influence of uncertainty in geotechnical engineering.However,for deep foundation pit,evaluating the system safety of retaining structures and finding cost-effective design points are main challenges.To address this,this study proposes a novel system reliability-based robust design method for retaining system of deep foundation pit and illustrated this method via a simplified case history in Suzhou,China.The proposed method included two parts:system reliability model and robust design method.Back Propagation Neural Network(BPNN)is used to fit limit state functions and conduct efficient reliability analysis.The common source random variable(CSRV)model are used to evaluate correlation between failure modes and determine the system reliability.Furthermore,based on the system reliability model,a robust design method is developed.This method aims to find cost-effective design points.To solve this problem,the third generation non-dominated genetic algorithm(NSGA-III)is adopted.The efficiency and accuracy of whole computations are improved by involving BPNN models and NSGA-III algorithm.The proposed method has a good performance in locating the balanced design point between safety and construction cost.Moreover,the proposed method can provide design points with reasonable stiffness distribution.展开更多
With the development of the economic and low⁃carbon society,high⁃performance building(HPB)design plays an increasingly important role in the architectural area.The performance of buildings usually includes the buildin...With the development of the economic and low⁃carbon society,high⁃performance building(HPB)design plays an increasingly important role in the architectural area.The performance of buildings usually includes the building energy consumption,building interior natural daylighting,building surface solar radiation,and so on.Building performance simulation(BPS)and multiple objective optimizations(MOO)are becoming the main methods for obtaining a high performance building in the design process.Correspondingly,the BPS and MOO are based on the parametric tools,like Grasshopper and Dynamo.However,these tools are lacking the data analysis module for designers to select the high⁃performance building more conveniently.This paper proposes a toolkit“GPPre”developed based on the Grasshopper platform and Python language.At the end of this paper,a case study was conducted to verify the function of GPPre,which shows that the combination of the sensitivity analysis(SA)and MOO module in the GPPre could aid architects to design the buildings with better performance.展开更多
A light and reliable aircraft has been the major goal of aircraft designers. It is imperative to design the aircraft wing skins as efficiently as possible since the wing skins comprise more than fifty percent of the s...A light and reliable aircraft has been the major goal of aircraft designers. It is imperative to design the aircraft wing skins as efficiently as possible since the wing skins comprise more than fifty percent of the structural weight of the aircraft wing. The aircraft wing skin consists of many different types of material and thickness configurations at various locations. Selecting a thickness for each location is perhaps the most significant design task. In this paper, we formulate discrete mathematical programming models to determine the optimal thicknesses for three different criteria: maximize reliability, minimize weight, and achieve a trade-off between maximizing reliability and minimizing weight. These three model formulations are generalized discrete resource-allocation problems, which lend themselves well to the dynamic programming approach. Consequently, we use the dynamic programming method to solve these model formulations. To illustrate our approach, an example is solved in which dynamic programming yields a minimum weight design as well as a trade-off curve for weight versus reliability for an aircraft wing with thirty locations (or panels) and fourteen thickness choices for each location.展开更多
In this paper, a multi-objective particle swarm optimization (MOPSO) algorithm and a nondominated sorting genetic algorithm II (NSGA-II) are used to optimize the operating parameters of a 1.6 L, spark ignition (S...In this paper, a multi-objective particle swarm optimization (MOPSO) algorithm and a nondominated sorting genetic algorithm II (NSGA-II) are used to optimize the operating parameters of a 1.6 L, spark ignition (SI) gasoline engine. The aim of this optimization is to reduce engine emissions in terms of carbon monoxide (CO), hydrocarbons (HC), and nitrogen oxides (NOx), which are the causes of diverse environmental problems such as air pollution and global warming. Stationary engine tests were performed for data generation, covering 60 operating conditions. Artificial neural networks (ANNs) were used to predict exhaust emissions, whose inputs were from six engine operating parameters, and the outputs were three resulting exhaust emissions. The outputs of ANNs were used to evaluate objective functions within the optimization algorithms: NSGA-II and MOPSO. Then a decision-making process was conducted, using a fuzzy method to select a Pareto solution with which the best emission reductions can be achieved. The NSGA-II algorithm achieved reductions of at least 9.84%, 82.44%, and 13.78% for CO, HC, and NOx, respectively. With a MOPSO algorithm the reached reductions were at least 13.68%, 83.80%, and 7.67% for CO, HC, and NOx, respectively.展开更多
Unmanned clusters can realize collaborative work,fexible confguration,and efcient operation,which has become an important development trend of unmanned platforms.Cluster positioning is important for ensuring the norma...Unmanned clusters can realize collaborative work,fexible confguration,and efcient operation,which has become an important development trend of unmanned platforms.Cluster positioning is important for ensuring the normal operation of unmanned clusters.The existing solutions have some problems such as requiring external system assistance,high system complexity,poor architecture scalability,and accumulation of positioning errors over time.Without the aid of the information outside the cluster,we plan to construct the relative position relationship with north alignment to adopt formation control and achieve robust cluster relative positioning.Based on the idea of bionics,this paper proposes a cluster robust hierarchical positioning architecture by analyzing the autonomous behavior of pigeon focks.We divide the clusters into follower clusters,core clusters,and leader nodes,which can realize fexible networking and cluster expansion.Aiming at the core cluster that is the most critical to relative positioning in the architecture,we propose a cluster relative positioning algorithm based on spatiotemporal correlation information.With the design idea of low cost and large-scale application,the algorithm uses intra-cluster ranging and the inertial navigation motion vector to construct the positioning equation and solves it through the Multidimensional Scaling(MDS)and Multiple Objective Particle Swarm Optimization(MOPSO)algorithms.The cluster formation is abstracted as a mixed direction-distance graph and the graph rigidity theory is used to analyze localizability conditions of the algorithm.We designed the cluster positioning simulation software and conducted localizability tests and positioning accuracy tests in diferent scenarios.Compared with the relative positioning algorithm based on Extended Kalman Filter(EKF),the algorithm proposed in this paper has more relaxed positioning conditions and can adapt to a variety of scenarios.It also has higher relative positioning accuracy,and the error does not accumulate over time.展开更多
文摘Besides economics and controllability, waste minimization has now become an objective in designing chemical processes, and usually leads to high costs of investment and operation. An attempt was made to minimize waste discharged from chemical reaction processes during the design and modification process while the operation conditions were also optimized to meet the requirements of technology and economics. Multiobjectives decision nonlinear programming (NLP) was employed to optimize the operation conditions of a chemical reaction process and reduce waste. A modeling language package-SPEEDUP was used to simulate the process. This paper presents a case study of the benzene production process. The flowsheet factors affecting the economics and waste generation were examined. Constraints were imposed to reduce the number of objectives and carry out optimal calculations easily. After comparisons of all possible solutions, best-compromise approach was applied to meet technological requirements and minimize waste.
基金Supported by the National Natural Science Foundation of China(9112001591120010)
文摘To performance efficient searching for an operator-supervised mobile robot, a multiple objectives route planning approach is proposed considering timeliness and path cost. An improved fitness function for route planning is proposed based on the multi-objective genetic algorithm (MOGA) for multiple objectives traveling salesman problem (MOTSP). Then, the path between two route nodes is generated based on the heuristic path planning method A *. A simplified timeliness function for route nodes is proposed to represent the timeliness of each node. Based on the proposed timeliness function, experiments are conducted using the proposed two-stage planning method. The experimental results show that the proposed MOGA with improved fitness function can perform the searching function well when the timeliness of the searching task needs to be taken into consideration.
文摘Cutting parameters have a significant impact on the machining effect.In order to reduce the machining time and improve the machining quality,this paper proposes an optimization algorithm based on Bp neural networkImproved Multi-Objective Particle Swarm(Bp-DWMOPSO).Firstly,this paper analyzes the existing problems in the traditional multi-objective particle swarm algorithm.Secondly,the Bp neural network model and the dynamic weight multi-objective particle swarm algorithm model are established.Finally,the Bp-DWMOPSO algorithm is designed based on the established models.In order to verify the effectiveness of the algorithm,this paper obtains the required data through equal probability orthogonal experiments on a typical Computer Numerical Control(CNC)turning machining case and uses the Bp-DWMOPSO algorithm for optimization.The experimental results show that the Cutting speed is 69.4 mm/min,the Feed speed is 0.05 mm/r,and the Depth of cut is 0.5 mm.The results show that the Bp-DWMOPSO algorithm can find the cutting parameters with a higher material removal rate and lower spindle load while ensuring the machining quality.This method provides a new idea for the optimization of turning machining parameters.
基金The authors are grateful to the financial support from National Natural Science Foundation of China(No.52078086)Postdoctoral innovative talents support program,Chongqing(Grant No.CQBX2021022)Financial support from China Southwest Geotechnical Investigation&Design Institute Co.,Ltd(C2021-0264).
文摘Recently,reliability-based design is a universal method to quantify negative influence of uncertainty in geotechnical engineering.However,for deep foundation pit,evaluating the system safety of retaining structures and finding cost-effective design points are main challenges.To address this,this study proposes a novel system reliability-based robust design method for retaining system of deep foundation pit and illustrated this method via a simplified case history in Suzhou,China.The proposed method included two parts:system reliability model and robust design method.Back Propagation Neural Network(BPNN)is used to fit limit state functions and conduct efficient reliability analysis.The common source random variable(CSRV)model are used to evaluate correlation between failure modes and determine the system reliability.Furthermore,based on the system reliability model,a robust design method is developed.This method aims to find cost-effective design points.To solve this problem,the third generation non-dominated genetic algorithm(NSGA-III)is adopted.The efficiency and accuracy of whole computations are improved by involving BPNN models and NSGA-III algorithm.The proposed method has a good performance in locating the balanced design point between safety and construction cost.Moreover,the proposed method can provide design points with reasonable stiffness distribution.
文摘With the development of the economic and low⁃carbon society,high⁃performance building(HPB)design plays an increasingly important role in the architectural area.The performance of buildings usually includes the building energy consumption,building interior natural daylighting,building surface solar radiation,and so on.Building performance simulation(BPS)and multiple objective optimizations(MOO)are becoming the main methods for obtaining a high performance building in the design process.Correspondingly,the BPS and MOO are based on the parametric tools,like Grasshopper and Dynamo.However,these tools are lacking the data analysis module for designers to select the high⁃performance building more conveniently.This paper proposes a toolkit“GPPre”developed based on the Grasshopper platform and Python language.At the end of this paper,a case study was conducted to verify the function of GPPre,which shows that the combination of the sensitivity analysis(SA)and MOO module in the GPPre could aid architects to design the buildings with better performance.
文摘A light and reliable aircraft has been the major goal of aircraft designers. It is imperative to design the aircraft wing skins as efficiently as possible since the wing skins comprise more than fifty percent of the structural weight of the aircraft wing. The aircraft wing skin consists of many different types of material and thickness configurations at various locations. Selecting a thickness for each location is perhaps the most significant design task. In this paper, we formulate discrete mathematical programming models to determine the optimal thicknesses for three different criteria: maximize reliability, minimize weight, and achieve a trade-off between maximizing reliability and minimizing weight. These three model formulations are generalized discrete resource-allocation problems, which lend themselves well to the dynamic programming approach. Consequently, we use the dynamic programming method to solve these model formulations. To illustrate our approach, an example is solved in which dynamic programming yields a minimum weight design as well as a trade-off curve for weight versus reliability for an aircraft wing with thirty locations (or panels) and fourteen thickness choices for each location.
文摘In this paper, a multi-objective particle swarm optimization (MOPSO) algorithm and a nondominated sorting genetic algorithm II (NSGA-II) are used to optimize the operating parameters of a 1.6 L, spark ignition (SI) gasoline engine. The aim of this optimization is to reduce engine emissions in terms of carbon monoxide (CO), hydrocarbons (HC), and nitrogen oxides (NOx), which are the causes of diverse environmental problems such as air pollution and global warming. Stationary engine tests were performed for data generation, covering 60 operating conditions. Artificial neural networks (ANNs) were used to predict exhaust emissions, whose inputs were from six engine operating parameters, and the outputs were three resulting exhaust emissions. The outputs of ANNs were used to evaluate objective functions within the optimization algorithms: NSGA-II and MOPSO. Then a decision-making process was conducted, using a fuzzy method to select a Pareto solution with which the best emission reductions can be achieved. The NSGA-II algorithm achieved reductions of at least 9.84%, 82.44%, and 13.78% for CO, HC, and NOx, respectively. With a MOPSO algorithm the reached reductions were at least 13.68%, 83.80%, and 7.67% for CO, HC, and NOx, respectively.
基金Science and Technology on Complex System Control and Intelligent Agent Cooperative Laboratory foundation(201101).
文摘Unmanned clusters can realize collaborative work,fexible confguration,and efcient operation,which has become an important development trend of unmanned platforms.Cluster positioning is important for ensuring the normal operation of unmanned clusters.The existing solutions have some problems such as requiring external system assistance,high system complexity,poor architecture scalability,and accumulation of positioning errors over time.Without the aid of the information outside the cluster,we plan to construct the relative position relationship with north alignment to adopt formation control and achieve robust cluster relative positioning.Based on the idea of bionics,this paper proposes a cluster robust hierarchical positioning architecture by analyzing the autonomous behavior of pigeon focks.We divide the clusters into follower clusters,core clusters,and leader nodes,which can realize fexible networking and cluster expansion.Aiming at the core cluster that is the most critical to relative positioning in the architecture,we propose a cluster relative positioning algorithm based on spatiotemporal correlation information.With the design idea of low cost and large-scale application,the algorithm uses intra-cluster ranging and the inertial navigation motion vector to construct the positioning equation and solves it through the Multidimensional Scaling(MDS)and Multiple Objective Particle Swarm Optimization(MOPSO)algorithms.The cluster formation is abstracted as a mixed direction-distance graph and the graph rigidity theory is used to analyze localizability conditions of the algorithm.We designed the cluster positioning simulation software and conducted localizability tests and positioning accuracy tests in diferent scenarios.Compared with the relative positioning algorithm based on Extended Kalman Filter(EKF),the algorithm proposed in this paper has more relaxed positioning conditions and can adapt to a variety of scenarios.It also has higher relative positioning accuracy,and the error does not accumulate over time.