This paper provides a method of the process of computation called the cumulative method, it is based upon repeated cumulative process. The cumulative method is being adapted to the purposes of computation, particularl...This paper provides a method of the process of computation called the cumulative method, it is based upon repeated cumulative process. The cumulative method is being adapted to the purposes of computation, particularly multiplication and division. The operations of multiplication and division are represented by algebraic formulas. An advantage of the method is that the cumulative process can be performed on decimal numbers. The present paper aims to establish a basic and useful formula valid for the two fundamental arithmetic operations of multiplication and division. The new cumulative method proved to be more flexible and made it possible to extend the multiplication and division based on repeated addition/subtraction to decimal numbers.展开更多
We propose a novel computational framework that is capable of employing different time integration algorithms and different space discretized methods such as the Finite Element Method,particle methods,and other spatia...We propose a novel computational framework that is capable of employing different time integration algorithms and different space discretized methods such as the Finite Element Method,particle methods,and other spatial methods on a single body sub-dividedintomultiple subdomains.This is in conjunctionwithimplementing thewell known Generalized Single Step Single Solve(GS4)family of algorithms which encompass the entire scope of Linear Multistep algorithms that have been developed over the past 50 years or so and are second order accurate into the Differential Algebraic Equation framework.In the current state of technology,the coupling of altogether different time integration algorithms has been limited to the same family of algorithms such as theNewmarkmethods and the coupling of different algorithms usually has resulted in reduced accuracy in one or more variables including the Lagrange multiplier.However,the robustness and versatility of the GS4 with its ability to accurately account for the numerical shifts in various time schemes it encompasses,overcomes such barriers and allows a wide variety of arbitrary implicit-implicit,implicit-explicit,and explicit-explicit pairing of the various time schemes while maintaining the second order accuracy in time for not only all primary variables such as displacement,velocity and acceleration but also the Lagrange multipliers used for coupling the subdomains.By selecting an appropriate spatialmethod and time scheme on the area with localized phenomena contrary to utilizing a single process on the entire body,the proposed work has the potential to better capture the physics of a given simulation.The method is validated by solving 2D problems for the linear second order systems with various combination of spatial methods and time schemes with great flexibility.The accuracy and efficacy of the present work have not yet been seen in the current field,and it has shown significant promise in its capabilities and effectiveness for general linear dynamics through numerical examples.展开更多
This paper presents an enhanced version of the standard shooting method that enables problems with two unknown parameters to be solved.A novel approach is applied to the analysis of the natural vibrations of Euler-Ber...This paper presents an enhanced version of the standard shooting method that enables problems with two unknown parameters to be solved.A novel approach is applied to the analysis of the natural vibrations of Euler-Bernoulli beams.The proposed algorithm,named as two-parameter multiple shooting method,is a new powerful numerical tool for calculating the natural frequencies and modes of multi-segment prismatic and non-prismatic beams with different boundary conditions.The impact of the axial force and additional point masses is also taken into account.Due to the fact that the method is based directly on the fourth-order ordinary differential equation,the structures do not have to be divided into many small elements to obtain an accurate enough solution,even though the geometry is very complex.To verify the proposed method,three different examples are considered,i.e.,a three-segment non-prismatic beam,a prismatic column subject to non-uniformly distributed compressive loads,and a two-segment beam with an additional point mass.Numerical analyses are carried out with the software MATHEMATICA.The results are compared with the solutions computed by the commercial finite element program SOFiSTiK.Good agreement is achieved,which confirms the correctness and high effectiveness of the formulated algorithm.展开更多
To solve the complex weight matrix derivative problem when using the weighted least squares method to estimate the parameters of the mixed additive and multiplicative random error model(MAM error model),we use an impr...To solve the complex weight matrix derivative problem when using the weighted least squares method to estimate the parameters of the mixed additive and multiplicative random error model(MAM error model),we use an improved artificial bee colony algorithm without derivative and the bootstrap method to estimate the parameters and evaluate the accuracy of MAM error model.The improved artificial bee colony algorithm can update individuals in multiple dimensions and improve the cooperation ability between individuals by constructing a new search equation based on the idea of quasi-affine transformation.The experimental results show that based on the weighted least squares criterion,the algorithm can get the results consistent with the weighted least squares method without multiple formula derivation.The parameter estimation and accuracy evaluation method based on the bootstrap method can get better parameter estimation and more reasonable accuracy information than existing methods,which provides a new idea for the theory of parameter estimation and accuracy evaluation of the MAM error model.展开更多
The numerical manifold method(NMM)can be viewed as an inherent continuous-discontinuous numerical method,which is based on two cover systems including mathematical and physical covers.Higher-order NMM that adopts high...The numerical manifold method(NMM)can be viewed as an inherent continuous-discontinuous numerical method,which is based on two cover systems including mathematical and physical covers.Higher-order NMM that adopts higher-order polynomials as its local approximations generally shows higher precision than zero-order NMM whose local approximations are constants.Therefore,higherorder NMM will be an excellent choice for crack propagation problem which requires higher stress accuracy.In addition,it is crucial to improve the stress accuracy around the crack tip for determining the direction of crack growth according to the maximum circumferential stress criterion in fracture mechanics.Thus,some other enriched local approximations are introduced to model the stress singularity at the crack tip.Generally,higher-order NMM,especially first-order NMM wherein local approximations are first-order polynomials,has the linear dependence problems as other partition of unit(PUM)based numerical methods does.To overcome this problem,an extended NMM is developed based on a new local approximation derived from the triangular plate element in the finite element method(FEM),which has no linear dependence issue.Meanwhile,the stresses at the nodes of mathematical mesh(the nodal stresses in FEM)are continuous and the degrees of freedom defined on the physical patches are physically meaningful.Next,the extended NMM is employed to solve multiple crack propagation problems.It shows that the fracture mechanics requirement and mechanical equilibrium can be satisfied by the trial-and-error method and the adjustment of the load multiplier in the process of crack propagation.Four numerical examples are illustrated to verify the feasibility of the proposed extended NMM.The numerical examples indicate that the crack growths simulated by the extended NMM are in good accordance with the reference solutions.Thus the effectiveness and correctness of the developed NMM have been validated.展开更多
In this paper, we propose an accelerated search-extension method (ASEM) based on the interpolated coefficient finite element method, the search-extension method (SEM) and the two-grid method to obtain the multiple...In this paper, we propose an accelerated search-extension method (ASEM) based on the interpolated coefficient finite element method, the search-extension method (SEM) and the two-grid method to obtain the multiple solutions for semilinear elliptic equations. This strategy is not only successfully implemented to obtain multiple solutions for a class of semilinear elliptic boundary value problems, but also reduces the expensive computation greatly. The numerical results in I-D and 2-D cases will show the efficiency of our approach.展开更多
The natural frequencies of an axially moving beam were determined by using the method of multiple scales. The method of second-order multiple scales could be directly applied to the governing equation if the axial mot...The natural frequencies of an axially moving beam were determined by using the method of multiple scales. The method of second-order multiple scales could be directly applied to the governing equation if the axial motion of the beam is assumed to be small. It can be concluded that the natural frequencies affected by the axial motion are proportional to the square of the velocity of the axially moving beam. The results obtained by the perturbation method were compared with those given with a numerical method and the comparison shows the correctness of the multiple-scale method if the velocity is rather small.展开更多
In this paper, the extended finite element method (XFEM) is adopted to analyze the interaction between a single macroscopic inclusion and a single macroscopic crack as well as that between multiple macroscopic or micr...In this paper, the extended finite element method (XFEM) is adopted to analyze the interaction between a single macroscopic inclusion and a single macroscopic crack as well as that between multiple macroscopic or microscopic defects under thermal/mechanical load. The effects of different shapes of multiple inclusions on the material thermomechanical response are investigated, and the level set method is coupled with XFEM to analyze the interaction of multiple defects. Further, the discretized extended finite element approximations in relation to thermoelastic problems of multiple defects under displacement or temperature field are given. Also, the interfaces of cracks or materials are represented by level set functions, which allow the mesh assignment not to conform to crack or material interfaces. Moreover, stress intensity factors of cracks are obtained by the interaction integral method or the M-integral method, and the stress/strain/stiffness fields are simulated in the case of multiple cracks or multiple inclusions. Finally, some numerical examples are provided to demonstrate the accuracy of our proposed method.展开更多
Longitudinal cracks on the tunnel lining significantly influence the performance of tunnels in operation.In this study,we propose a semi-analytical method that provides a simple and effective way to calculate the inte...Longitudinal cracks on the tunnel lining significantly influence the performance of tunnels in operation.In this study,we propose a semi-analytical method that provides a simple and effective way to calculate the internal forces of tunnel linings with multiple cracks.The semi-analytical solution is obtained using structural analysis considering the flexural rigidity for the cracked longitudinal section of the tunnel lining.Then the proposed solution is verified numerically.Using the proposed method,the influences of the crack depth and the number of cracks on the bending moment and modified crack tip stress are investigated.With the increase in crack depth,the bending moment of lining scetion adjacent to the crack decreases,while the bending moment of lining scetion far away from the crack increases slightly.The more the number of cracks in a tunnel lining,the easier the new cracks initiated.展开更多
Principles of polynomial fitting zero offset profile are introduced, and a new polynomial fitting method, tbe time-amplitude dual fitting method, is developed. The method can be used to purify seismic waves and suppre...Principles of polynomial fitting zero offset profile are introduced, and a new polynomial fitting method, tbe time-amplitude dual fitting method, is developed. The method can be used to purify seismic waves and suppress multiples. The effect of suppressing multiples is compared with other multiple suppression methods.展开更多
The fatigue life of aeroengine turbine disc presents great dispersion due to the randomness of the basic variables,such as applied load,working temperature,geometrical dimensions and material properties.In order to am...The fatigue life of aeroengine turbine disc presents great dispersion due to the randomness of the basic variables,such as applied load,working temperature,geometrical dimensions and material properties.In order to ameliorate reliability analysis efficiency without loss of reliability,the distributed collaborative response surface method(DCRSM) was proposed,and its basic theories were established in this work.Considering the failure dependency among the failure modes,the distributed response surface was constructed to establish the relationship between the failure mode and the relevant random variables.Then,the failure modes were considered as the random variables of system response to obtain the distributed collaborative response surface model based on structure failure criterion.Finally,the given turbine disc structure was employed to illustrate the feasibility and validity of the presented method.Through the comparison of DCRSM,Monte Carlo method(MCM) and the traditional response surface method(RSM),the results show that the computational precision for DCRSM is more consistent with MCM than RSM,while DCRSM needs far less computing time than MCM and RSM under the same simulation conditions.Thus,DCRSM is demonstrated to be a feasible and valid approach for improving the computational efficiency of reliability analysis for aeroengine turbine disc fatigue life with multiple random variables,and has great potential value for the complicated mechanical structure with multi-component and multi-failure mode.展开更多
The symmetric linear system gives us many simplifications and a possibility to adapt the computations to the computer at hand in order to achieve better performance. The aim of this paper is to consider the block bidi...The symmetric linear system gives us many simplifications and a possibility to adapt the computations to the computer at hand in order to achieve better performance. The aim of this paper is to consider the block bidiagonalization methods derived from a symmetric augmented multiple linear systems and make a comparison with the block GMRES and block biconjugate gradient methods.展开更多
Consider acoustic wave scattering by multiple obstacles with different sound properties on the boundary, which can be modeled by a mixed boundary value problem for the Helmholtz equation in frequency domain. Compared ...Consider acoustic wave scattering by multiple obstacles with different sound properties on the boundary, which can be modeled by a mixed boundary value problem for the Helmholtz equation in frequency domain. Compared with the standard scattering problem for one obstacle, the difficulty of such a new problem is the interaction of scattered wave by different obstacles. A decomposition method for solving this multiple scattering problem is developed. Using the boundary integral equation method, we decompose the total scattered field into a sum of contributions by separated obstacles. Each contribution corresponds to scattering problem of single obstacle. However, all the single scattering problems are coupled via the boundary conditions, representing the physical interaction of scattered wave by different obstacles. We prove the feasibility of such a decomposition. To compute these contributions efficiently, an iteration algorithm of Jacobi type is proposed, decoupling the interaction of scattered wave from the numerical points of view. Under the well-separation assumptions on multiple obstacles, we prove the convergence of iteration sequence generated by the Jacobi algorithm, and give the error estimate between exact scattered wave and the iteration solution in terms of the obstacle size and the minimal distance of multiple obstacles. Such a quantitative description reveals the essences of wave scattering by multiple obstacles. Numerical examples showing the accuracy and convergence of our method are presented.展开更多
The strategies that minimize the overall solution time of multiple linear systems in 3D finite element method (FEM) modeling of direct current (DC) resistivity were discussed. A global stiff matrix is assembled and st...The strategies that minimize the overall solution time of multiple linear systems in 3D finite element method (FEM) modeling of direct current (DC) resistivity were discussed. A global stiff matrix is assembled and stored in two parts separately. One part is associated with the volume integral and the other is associated with the subsurface boundary integral. The equivalent multiple linear systems with closer right-hand sides than the original systems were constructed. A recycling Krylov subspace technique was employed to solve the multiple linear systems. The solution of the seed system was used as an initial guess for the subsequent systems. The results of two numerical experiments show that the improved algorithm reduces the iterations and CPU time by almost 50%, compared with the classical preconditioned conjugate gradient method.展开更多
A method combining the immersed boundary technique and a multi- relaxation-time (MRT) lattice Boltzmann flux solver (LBFS) is presented for numerical simulation of incompressible flows over circular and elliptic c...A method combining the immersed boundary technique and a multi- relaxation-time (MRT) lattice Boltzmann flux solver (LBFS) is presented for numerical simulation of incompressible flows over circular and elliptic cylinders and NACA 0012 Airfoil. The method uses a simple Cartesian mesh to simulate flows past immersed complicated bodies. With the Chapman-Enskog expansion analysis, a transform is performed between the Navier-Stokes and lattice Boltzmann equations (LBEs). The LBFS is used to discretize the macroscopic differential equations with a finite volume method and evaluate the interface fluxes through local reconstruction of the lattice Boltzmann solution. The immersed boundary technique is used to correct the intermediate velocity around the solid boundary to satisfy the no-slip boundary condition. Agreement of simulation results with the data found in the literature shows reliability of the proposed method in simulating laminar flows on a Cartesian mesh.展开更多
Traditional topology optimization methods may lead to a great reduction in the redundancy of the optimized structure due to unexpected material removal at the critical components.The local failure in critical componen...Traditional topology optimization methods may lead to a great reduction in the redundancy of the optimized structure due to unexpected material removal at the critical components.The local failure in critical components can instantly cause the overall failure in the structure.More and more scholars have taken the fail-safe design into consideration when conducting topology optimization.A lot of good designs have been obtained in their research,though limited regarding minimizing structural compliance(maximizing stiffness)with given amount of material.In terms of practical engineering applications considering fail-safe design,it is more meaningful to seek for the lightweight structure with enough stiffness to resist various component failures and/or to meet multiple design requirements,than the stiffest structure only.Thus,this paper presents a fail-safe topology optimization model for minimizing structural weight with respect to stress and displacement constraints.The optimization problem is solved by utilizing the independent continuous mapping(ICM)method combined with the dual sequence quadratic programming(DSQP)algorithm.Special treatments are applied to the constraints,including converting local stress constraints into a global structural strain energy constraint and expressing the displacement constraint explicitly with approximations.All of the constraints are nondimensionalized to avoid numerical instability caused by great differences in constraint magnitudes.The optimized results exhibit more complex topological configurations and higher redundancy to resist local failures than the traditional optimization designs.This paper also shows how to find the worst failure region,which can be a good reference for designers in engineering.展开更多
This article examines the interaction of multiple cracks in an infinite plate by using a numerical method. The numerical method consists of the non-singular displacement discontinuity element presented by Crouch and S...This article examines the interaction of multiple cracks in an infinite plate by using a numerical method. The numerical method consists of the non-singular displacement discontinuity element presented by Crouch and Startled and the crack tip displacement discontinuity elements proposed by the author. In the numerical method implementation, the left or the right crack tip element is placed locally at the corresponding left or right crack tip on top of the constant displacement discontinuity elements that cover the entire crack surface and the other boundaries. The numerical method is called a hybrid displacement discontinuity method. The following test examples of crack problems in an infinite plate under tension are included: “ center-inclined cracked plate”, “interaction of two collinear cracks with equal length”, “interaction of three collinear cracks with equal length”, “interaction of two parallel cracks with equal length”, and “interaction of one horizontal crack and one inclined crack”. The present numerical results show that the numerical method is simple yet very accurate for analyzing the interaction of multiple cracks in an infinite plate.展开更多
Partition of unity based numerical manifold method can solve continuous and discontinuous problems in a unified framework with a two-cover system,i.e.,the mathematical cover and physical cover.However,renewal of the t...Partition of unity based numerical manifold method can solve continuous and discontinuous problems in a unified framework with a two-cover system,i.e.,the mathematical cover and physical cover.However,renewal of the topology of the two-cover system poses a challenge for multiple crack propagation problems and there are few references.In this study,a robust and efficient strategy is proposed to update the cover system of the numerical manifold method in simulation of multiple crack propagation problems.The proposed algorithm updates the cover system with a bottom-up process:1)identification of fractured manifold elements according to the previous and latest crack tip position;and 2)local topological update of the manifold elements,physical patches,block boundary loops,and non-persistent joint loops according to the scenario classification of the propagating crack.The proposed crack tracking strategy and classification of the renewal cases promote a robust and efficient cover renewal algorithm for multiple crack propagation analysis.Three crack propagation examples show that the proposed algorithm performs well in updating the cover system.This cover renewal methodology can be extended for numerical manifold method with polygonal mathematical covers.展开更多
Because of the uncertainty and subjectivity of decision makers in the complex decision-making environment,the evaluation information of alternatives given by decision makers is often fuzzy and uncertain.As a generaliz...Because of the uncertainty and subjectivity of decision makers in the complex decision-making environment,the evaluation information of alternatives given by decision makers is often fuzzy and uncertain.As a generalization of intuitionistic fuzzy set(IFSs)and Pythagoras fuzzy set(PFSs),q-rung orthopair fuzzy set(q-ROFS)is more suitable for expressing fuzzy and uncertain information.But,in actual multiple attribute decision making(MADM)problems,the weights of DMs and attributes are always completely unknown or partly known,to date,the maximizing deviation method is a good tool to deal with such issues.Thus,combine the q-ROFS and conventional maximizing deviation method,we will study the maximizing deviation method under q-ROFSs and q-RIVOFSs in this paper.Firstly,we briefly introduce the basic concept of q-rung orthopair fuzzy sets(q-ROFSs)and q-rung interval-valued orthopair fuzzy sets(q-RIVOFSs).Then,combine the maximizing deviation method with q-rung orthopair fuzzy information,we establish two new decision making models.On this basis,the proposed models are applied to MADM problems with q-rung orthopair fuzzy information.Compared with existing methods,the effectiveness and superiority of the new model are analyzed.This method can effectively solve the MADM problem whose decision information is represented by q-rung orthopair fuzzy numbers(q-ROFNs)and whose attributes are incomplete.展开更多
This study establishes the launch dynamics method,sensitivity analysis method,and multiobjective dynamic optimization method for the dynamic simulation analysis of the multiple launch rocket system(MLRS)based on the R...This study establishes the launch dynamics method,sensitivity analysis method,and multiobjective dynamic optimization method for the dynamic simulation analysis of the multiple launch rocket system(MLRS)based on the Riccati transfer matrix method for multibody systems(RMSTMM),direct differentiation method(DDM),and genetic algorithm(GA),respectively.Results show that simulation results of the dynamic response agree well with test results.The sensitivity analysis method is highly programming,the matrix order is low,and the calculation time is much shorter than that of the Lagrange method.With the increase of system complexity,the advantage of a high computing speed becomes more evident.Structural parameters that have the greatest influence on the dynamic response include the connection stiffness between the pitching body and the rotating body,the connection stiffness between the rotating body and the vehicle body,and the connection stiffnesses among 14^(#),16^(#),and 17^(#)wheels and the ground,which are the optimization design variables.After optimization,angular velocity variances of the pitching body in the revolving and pitching directions are reduced by 97.84%and 95.22%,respectively.展开更多
文摘This paper provides a method of the process of computation called the cumulative method, it is based upon repeated cumulative process. The cumulative method is being adapted to the purposes of computation, particularly multiplication and division. The operations of multiplication and division are represented by algebraic formulas. An advantage of the method is that the cumulative process can be performed on decimal numbers. The present paper aims to establish a basic and useful formula valid for the two fundamental arithmetic operations of multiplication and division. The new cumulative method proved to be more flexible and made it possible to extend the multiplication and division based on repeated addition/subtraction to decimal numbers.
文摘We propose a novel computational framework that is capable of employing different time integration algorithms and different space discretized methods such as the Finite Element Method,particle methods,and other spatial methods on a single body sub-dividedintomultiple subdomains.This is in conjunctionwithimplementing thewell known Generalized Single Step Single Solve(GS4)family of algorithms which encompass the entire scope of Linear Multistep algorithms that have been developed over the past 50 years or so and are second order accurate into the Differential Algebraic Equation framework.In the current state of technology,the coupling of altogether different time integration algorithms has been limited to the same family of algorithms such as theNewmarkmethods and the coupling of different algorithms usually has resulted in reduced accuracy in one or more variables including the Lagrange multiplier.However,the robustness and versatility of the GS4 with its ability to accurately account for the numerical shifts in various time schemes it encompasses,overcomes such barriers and allows a wide variety of arbitrary implicit-implicit,implicit-explicit,and explicit-explicit pairing of the various time schemes while maintaining the second order accuracy in time for not only all primary variables such as displacement,velocity and acceleration but also the Lagrange multipliers used for coupling the subdomains.By selecting an appropriate spatialmethod and time scheme on the area with localized phenomena contrary to utilizing a single process on the entire body,the proposed work has the potential to better capture the physics of a given simulation.The method is validated by solving 2D problems for the linear second order systems with various combination of spatial methods and time schemes with great flexibility.The accuracy and efficacy of the present work have not yet been seen in the current field,and it has shown significant promise in its capabilities and effectiveness for general linear dynamics through numerical examples.
文摘This paper presents an enhanced version of the standard shooting method that enables problems with two unknown parameters to be solved.A novel approach is applied to the analysis of the natural vibrations of Euler-Bernoulli beams.The proposed algorithm,named as two-parameter multiple shooting method,is a new powerful numerical tool for calculating the natural frequencies and modes of multi-segment prismatic and non-prismatic beams with different boundary conditions.The impact of the axial force and additional point masses is also taken into account.Due to the fact that the method is based directly on the fourth-order ordinary differential equation,the structures do not have to be divided into many small elements to obtain an accurate enough solution,even though the geometry is very complex.To verify the proposed method,three different examples are considered,i.e.,a three-segment non-prismatic beam,a prismatic column subject to non-uniformly distributed compressive loads,and a two-segment beam with an additional point mass.Numerical analyses are carried out with the software MATHEMATICA.The results are compared with the solutions computed by the commercial finite element program SOFiSTiK.Good agreement is achieved,which confirms the correctness and high effectiveness of the formulated algorithm.
基金supported by the National Natural Science Foundation of China(No.42174011 and No.41874001).
文摘To solve the complex weight matrix derivative problem when using the weighted least squares method to estimate the parameters of the mixed additive and multiplicative random error model(MAM error model),we use an improved artificial bee colony algorithm without derivative and the bootstrap method to estimate the parameters and evaluate the accuracy of MAM error model.The improved artificial bee colony algorithm can update individuals in multiple dimensions and improve the cooperation ability between individuals by constructing a new search equation based on the idea of quasi-affine transformation.The experimental results show that based on the weighted least squares criterion,the algorithm can get the results consistent with the weighted least squares method without multiple formula derivation.The parameter estimation and accuracy evaluation method based on the bootstrap method can get better parameter estimation and more reasonable accuracy information than existing methods,which provides a new idea for the theory of parameter estimation and accuracy evaluation of the MAM error model.
基金supported by the National Key R&D Program of China (Grant No.2018YFC0407002)the National Natural Science Foundation of China(Grant Nos.11502033 and 51879014)
文摘The numerical manifold method(NMM)can be viewed as an inherent continuous-discontinuous numerical method,which is based on two cover systems including mathematical and physical covers.Higher-order NMM that adopts higher-order polynomials as its local approximations generally shows higher precision than zero-order NMM whose local approximations are constants.Therefore,higherorder NMM will be an excellent choice for crack propagation problem which requires higher stress accuracy.In addition,it is crucial to improve the stress accuracy around the crack tip for determining the direction of crack growth according to the maximum circumferential stress criterion in fracture mechanics.Thus,some other enriched local approximations are introduced to model the stress singularity at the crack tip.Generally,higher-order NMM,especially first-order NMM wherein local approximations are first-order polynomials,has the linear dependence problems as other partition of unit(PUM)based numerical methods does.To overcome this problem,an extended NMM is developed based on a new local approximation derived from the triangular plate element in the finite element method(FEM),which has no linear dependence issue.Meanwhile,the stresses at the nodes of mathematical mesh(the nodal stresses in FEM)are continuous and the degrees of freedom defined on the physical patches are physically meaningful.Next,the extended NMM is employed to solve multiple crack propagation problems.It shows that the fracture mechanics requirement and mechanical equilibrium can be satisfied by the trial-and-error method and the adjustment of the load multiplier in the process of crack propagation.Four numerical examples are illustrated to verify the feasibility of the proposed extended NMM.The numerical examples indicate that the crack growths simulated by the extended NMM are in good accordance with the reference solutions.Thus the effectiveness and correctness of the developed NMM have been validated.
基金supported by the National Natural Science Foundation of China (10571053, 10871066, 10811120282)Programme for New Century Excellent Talents in University(NCET-06-0712)
文摘In this paper, we propose an accelerated search-extension method (ASEM) based on the interpolated coefficient finite element method, the search-extension method (SEM) and the two-grid method to obtain the multiple solutions for semilinear elliptic equations. This strategy is not only successfully implemented to obtain multiple solutions for a class of semilinear elliptic boundary value problems, but also reduces the expensive computation greatly. The numerical results in I-D and 2-D cases will show the efficiency of our approach.
基金Project supported by the National Natural Science Foundation of China (Grant No.10472060)
文摘The natural frequencies of an axially moving beam were determined by using the method of multiple scales. The method of second-order multiple scales could be directly applied to the governing equation if the axial motion of the beam is assumed to be small. It can be concluded that the natural frequencies affected by the axial motion are proportional to the square of the velocity of the axially moving beam. The results obtained by the perturbation method were compared with those given with a numerical method and the comparison shows the correctness of the multiple-scale method if the velocity is rather small.
基金supported by the National Natural Science Foundation of China (Grants 11471262, 50976003, 51136005)
文摘In this paper, the extended finite element method (XFEM) is adopted to analyze the interaction between a single macroscopic inclusion and a single macroscopic crack as well as that between multiple macroscopic or microscopic defects under thermal/mechanical load. The effects of different shapes of multiple inclusions on the material thermomechanical response are investigated, and the level set method is coupled with XFEM to analyze the interaction of multiple defects. Further, the discretized extended finite element approximations in relation to thermoelastic problems of multiple defects under displacement or temperature field are given. Also, the interfaces of cracks or materials are represented by level set functions, which allow the mesh assignment not to conform to crack or material interfaces. Moreover, stress intensity factors of cracks are obtained by the interaction integral method or the M-integral method, and the stress/strain/stiffness fields are simulated in the case of multiple cracks or multiple inclusions. Finally, some numerical examples are provided to demonstrate the accuracy of our proposed method.
基金The authors gratefully acknowledge the financial support by the Key Project of High-speed Rail Joint Fund of National Natural Science Foundation of China(Grant No.U1934210)the Natural Science Foundation of Beijing,China(Grant No.8202037).
文摘Longitudinal cracks on the tunnel lining significantly influence the performance of tunnels in operation.In this study,we propose a semi-analytical method that provides a simple and effective way to calculate the internal forces of tunnel linings with multiple cracks.The semi-analytical solution is obtained using structural analysis considering the flexural rigidity for the cracked longitudinal section of the tunnel lining.Then the proposed solution is verified numerically.Using the proposed method,the influences of the crack depth and the number of cracks on the bending moment and modified crack tip stress are investigated.With the increase in crack depth,the bending moment of lining scetion adjacent to the crack decreases,while the bending moment of lining scetion far away from the crack increases slightly.The more the number of cracks in a tunnel lining,the easier the new cracks initiated.
文摘Principles of polynomial fitting zero offset profile are introduced, and a new polynomial fitting method, tbe time-amplitude dual fitting method, is developed. The method can be used to purify seismic waves and suppress multiples. The effect of suppressing multiples is compared with other multiple suppression methods.
基金Project(51335003)supported by the National Natural Science Foundation of ChinaProject(20111102110011)supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘The fatigue life of aeroengine turbine disc presents great dispersion due to the randomness of the basic variables,such as applied load,working temperature,geometrical dimensions and material properties.In order to ameliorate reliability analysis efficiency without loss of reliability,the distributed collaborative response surface method(DCRSM) was proposed,and its basic theories were established in this work.Considering the failure dependency among the failure modes,the distributed response surface was constructed to establish the relationship between the failure mode and the relevant random variables.Then,the failure modes were considered as the random variables of system response to obtain the distributed collaborative response surface model based on structure failure criterion.Finally,the given turbine disc structure was employed to illustrate the feasibility and validity of the presented method.Through the comparison of DCRSM,Monte Carlo method(MCM) and the traditional response surface method(RSM),the results show that the computational precision for DCRSM is more consistent with MCM than RSM,while DCRSM needs far less computing time than MCM and RSM under the same simulation conditions.Thus,DCRSM is demonstrated to be a feasible and valid approach for improving the computational efficiency of reliability analysis for aeroengine turbine disc fatigue life with multiple random variables,and has great potential value for the complicated mechanical structure with multi-component and multi-failure mode.
基金The research of this author was supported by the National Natural Science Foundation of China,the JiangsuProvince Natural Science Foundation,the Jiangsu Province"333Engineering" Foundation and the Jiangsu Province"Qinglan Engineering" Foundation
文摘The symmetric linear system gives us many simplifications and a possibility to adapt the computations to the computer at hand in order to achieve better performance. The aim of this paper is to consider the block bidiagonalization methods derived from a symmetric augmented multiple linear systems and make a comparison with the block GMRES and block biconjugate gradient methods.
基金supported by NSFC (11071039,11161130002)Natural Science Foundation of Jiangsu Province (BK2011584)
文摘Consider acoustic wave scattering by multiple obstacles with different sound properties on the boundary, which can be modeled by a mixed boundary value problem for the Helmholtz equation in frequency domain. Compared with the standard scattering problem for one obstacle, the difficulty of such a new problem is the interaction of scattered wave by different obstacles. A decomposition method for solving this multiple scattering problem is developed. Using the boundary integral equation method, we decompose the total scattered field into a sum of contributions by separated obstacles. Each contribution corresponds to scattering problem of single obstacle. However, all the single scattering problems are coupled via the boundary conditions, representing the physical interaction of scattered wave by different obstacles. We prove the feasibility of such a decomposition. To compute these contributions efficiently, an iteration algorithm of Jacobi type is proposed, decoupling the interaction of scattered wave from the numerical points of view. Under the well-separation assumptions on multiple obstacles, we prove the convergence of iteration sequence generated by the Jacobi algorithm, and give the error estimate between exact scattered wave and the iteration solution in terms of the obstacle size and the minimal distance of multiple obstacles. Such a quantitative description reveals the essences of wave scattering by multiple obstacles. Numerical examples showing the accuracy and convergence of our method are presented.
基金Projects(40974077,41164004)supported by the National Natural Science Foundation of ChinaProject(2007AA06Z134)supported by the National High Technology Research and Development Program of China+2 种基金Projects(2011GXNSFA018003,0832263)supported by the Natural Science Foundation of Guangxi Province,ChinaProject supported by Program for Excellent Talents in Guangxi Higher Education Institution,ChinaProject supported by the Foundation of Guilin University of Technology,China
文摘The strategies that minimize the overall solution time of multiple linear systems in 3D finite element method (FEM) modeling of direct current (DC) resistivity were discussed. A global stiff matrix is assembled and stored in two parts separately. One part is associated with the volume integral and the other is associated with the subsurface boundary integral. The equivalent multiple linear systems with closer right-hand sides than the original systems were constructed. A recycling Krylov subspace technique was employed to solve the multiple linear systems. The solution of the seed system was used as an initial guess for the subsequent systems. The results of two numerical experiments show that the improved algorithm reduces the iterations and CPU time by almost 50%, compared with the classical preconditioned conjugate gradient method.
文摘A method combining the immersed boundary technique and a multi- relaxation-time (MRT) lattice Boltzmann flux solver (LBFS) is presented for numerical simulation of incompressible flows over circular and elliptic cylinders and NACA 0012 Airfoil. The method uses a simple Cartesian mesh to simulate flows past immersed complicated bodies. With the Chapman-Enskog expansion analysis, a transform is performed between the Navier-Stokes and lattice Boltzmann equations (LBEs). The LBFS is used to discretize the macroscopic differential equations with a finite volume method and evaluate the interface fluxes through local reconstruction of the lattice Boltzmann solution. The immersed boundary technique is used to correct the intermediate velocity around the solid boundary to satisfy the no-slip boundary condition. Agreement of simulation results with the data found in the literature shows reliability of the proposed method in simulating laminar flows on a Cartesian mesh.
基金This work showed in this paper has been supported by the National Natural Science Foundation of China(Grant 11872080).
文摘Traditional topology optimization methods may lead to a great reduction in the redundancy of the optimized structure due to unexpected material removal at the critical components.The local failure in critical components can instantly cause the overall failure in the structure.More and more scholars have taken the fail-safe design into consideration when conducting topology optimization.A lot of good designs have been obtained in their research,though limited regarding minimizing structural compliance(maximizing stiffness)with given amount of material.In terms of practical engineering applications considering fail-safe design,it is more meaningful to seek for the lightweight structure with enough stiffness to resist various component failures and/or to meet multiple design requirements,than the stiffest structure only.Thus,this paper presents a fail-safe topology optimization model for minimizing structural weight with respect to stress and displacement constraints.The optimization problem is solved by utilizing the independent continuous mapping(ICM)method combined with the dual sequence quadratic programming(DSQP)algorithm.Special treatments are applied to the constraints,including converting local stress constraints into a global structural strain energy constraint and expressing the displacement constraint explicitly with approximations.All of the constraints are nondimensionalized to avoid numerical instability caused by great differences in constraint magnitudes.The optimized results exhibit more complex topological configurations and higher redundancy to resist local failures than the traditional optimization designs.This paper also shows how to find the worst failure region,which can be a good reference for designers in engineering.
文摘This article examines the interaction of multiple cracks in an infinite plate by using a numerical method. The numerical method consists of the non-singular displacement discontinuity element presented by Crouch and Startled and the crack tip displacement discontinuity elements proposed by the author. In the numerical method implementation, the left or the right crack tip element is placed locally at the corresponding left or right crack tip on top of the constant displacement discontinuity elements that cover the entire crack surface and the other boundaries. The numerical method is called a hybrid displacement discontinuity method. The following test examples of crack problems in an infinite plate under tension are included: “ center-inclined cracked plate”, “interaction of two collinear cracks with equal length”, “interaction of three collinear cracks with equal length”, “interaction of two parallel cracks with equal length”, and “interaction of one horizontal crack and one inclined crack”. The present numerical results show that the numerical method is simple yet very accurate for analyzing the interaction of multiple cracks in an infinite plate.
基金Project(51321065,51479191,11672360)supported by the National Natural Science Foundation of China。
文摘Partition of unity based numerical manifold method can solve continuous and discontinuous problems in a unified framework with a two-cover system,i.e.,the mathematical cover and physical cover.However,renewal of the topology of the two-cover system poses a challenge for multiple crack propagation problems and there are few references.In this study,a robust and efficient strategy is proposed to update the cover system of the numerical manifold method in simulation of multiple crack propagation problems.The proposed algorithm updates the cover system with a bottom-up process:1)identification of fractured manifold elements according to the previous and latest crack tip position;and 2)local topological update of the manifold elements,physical patches,block boundary loops,and non-persistent joint loops according to the scenario classification of the propagating crack.The proposed crack tracking strategy and classification of the renewal cases promote a robust and efficient cover renewal algorithm for multiple crack propagation analysis.Three crack propagation examples show that the proposed algorithm performs well in updating the cover system.This cover renewal methodology can be extended for numerical manifold method with polygonal mathematical covers.
基金supported by the National Natural Science Foundation of China under Grant No.71571128the Humanities and Social Sciences Foundation of Ministry of Education of the People’s Republic of China(No.17XJA630003).
文摘Because of the uncertainty and subjectivity of decision makers in the complex decision-making environment,the evaluation information of alternatives given by decision makers is often fuzzy and uncertain.As a generalization of intuitionistic fuzzy set(IFSs)and Pythagoras fuzzy set(PFSs),q-rung orthopair fuzzy set(q-ROFS)is more suitable for expressing fuzzy and uncertain information.But,in actual multiple attribute decision making(MADM)problems,the weights of DMs and attributes are always completely unknown or partly known,to date,the maximizing deviation method is a good tool to deal with such issues.Thus,combine the q-ROFS and conventional maximizing deviation method,we will study the maximizing deviation method under q-ROFSs and q-RIVOFSs in this paper.Firstly,we briefly introduce the basic concept of q-rung orthopair fuzzy sets(q-ROFSs)and q-rung interval-valued orthopair fuzzy sets(q-RIVOFSs).Then,combine the maximizing deviation method with q-rung orthopair fuzzy information,we establish two new decision making models.On this basis,the proposed models are applied to MADM problems with q-rung orthopair fuzzy information.Compared with existing methods,the effectiveness and superiority of the new model are analyzed.This method can effectively solve the MADM problem whose decision information is represented by q-rung orthopair fuzzy numbers(q-ROFNs)and whose attributes are incomplete.
基金The Natural Science Foundation of China(No.11972193)the Science Challenge Project(No.TZ2016006-0104)。
文摘This study establishes the launch dynamics method,sensitivity analysis method,and multiobjective dynamic optimization method for the dynamic simulation analysis of the multiple launch rocket system(MLRS)based on the Riccati transfer matrix method for multibody systems(RMSTMM),direct differentiation method(DDM),and genetic algorithm(GA),respectively.Results show that simulation results of the dynamic response agree well with test results.The sensitivity analysis method is highly programming,the matrix order is low,and the calculation time is much shorter than that of the Lagrange method.With the increase of system complexity,the advantage of a high computing speed becomes more evident.Structural parameters that have the greatest influence on the dynamic response include the connection stiffness between the pitching body and the rotating body,the connection stiffness between the rotating body and the vehicle body,and the connection stiffnesses among 14^(#),16^(#),and 17^(#)wheels and the ground,which are the optimization design variables.After optimization,angular velocity variances of the pitching body in the revolving and pitching directions are reduced by 97.84%and 95.22%,respectively.