期刊文献+
共找到59,379篇文章
< 1 2 250 >
每页显示 20 50 100
Attention-relation network for mobile phone screen defect classification via a few samples 被引量:1
1
作者 Jiao Mao Guoliang Xu +1 位作者 Lijun He Jiangtao Luo 《Digital Communications and Networks》 SCIE CSCD 2024年第4期1113-1120,共8页
How to use a few defect samples to complete the defect classification is a key challenge in the production of mobile phone screens.An attention-relation network for the mobile phone screen defect classification is pro... How to use a few defect samples to complete the defect classification is a key challenge in the production of mobile phone screens.An attention-relation network for the mobile phone screen defect classification is proposed in this paper.The architecture of the attention-relation network contains two modules:a feature extract module and a feature metric module.Different from other few-shot models,an attention mechanism is applied to metric learning in our model to measure the distance between features,so as to pay attention to the correlation between features and suppress unwanted information.Besides,we combine dilated convolution and skip connection to extract more feature information for follow-up processing.We validate attention-relation network on the mobile phone screen defect dataset.The experimental results show that the classification accuracy of the attentionrelation network is 0.9486 under the 5-way 1-shot training strategy and 0.9039 under the 5-way 5-shot setting.It achieves the excellent effect of classification for mobile phone screen defects and outperforms with dominant advantages. 展开更多
关键词 Mobile phone screen defects A few samples Relation network Attention mechanism Dilated convolution
下载PDF
Prediction of corrosion rate for friction stir processed WE43 alloy by combining PSO-based virtual sample generation and machine learning 被引量:1
2
作者 Annayath Maqbool Abdul Khalad Noor Zaman Khan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1518-1528,共11页
The corrosion rate is a crucial factor that impacts the longevity of materials in different applications.After undergoing friction stir processing(FSP),the refined grain structure leads to a notable decrease in corros... The corrosion rate is a crucial factor that impacts the longevity of materials in different applications.After undergoing friction stir processing(FSP),the refined grain structure leads to a notable decrease in corrosion rate.However,a better understanding of the correlation between the FSP process parameters and the corrosion rate is still lacking.The current study used machine learning to establish the relationship between the corrosion rate and FSP process parameters(rotational speed,traverse speed,and shoulder diameter)for WE43 alloy.The Taguchi L27 design of experiments was used for the experimental analysis.In addition,synthetic data was generated using particle swarm optimization for virtual sample generation(VSG).The application of VSG has led to an increase in the prediction accuracy of machine learning models.A sensitivity analysis was performed using Shapley Additive Explanations to determine the key factors affecting the corrosion rate.The shoulder diameter had a significant impact in comparison to the traverse speed.A graphical user interface(GUI)has been created to predict the corrosion rate using the identified factors.This study focuses on the WE43 alloy,but its findings can also be used to predict the corrosion rate of other magnesium alloys. 展开更多
关键词 Corrosion rate Friction stir processing Virtual sample generation Particle swarm optimization Machine learning Graphical user interface
下载PDF
Density estimation-based method to determine sample size for random sample partition of big data
3
作者 Yulin HE Jiaqi CHEN +2 位作者 Jiaxing SHEN Philippe FOURNIER-VIGER Joshua Zhexue HUANG 《Frontiers of Computer Science》 SCIE EI CSCD 2024年第5期57-70,共14页
Random sample partition(RSP)is a newly developed big data representation and management model to deal with big data approximate computation problems.Academic research and practical applications have confirmed that RSP... Random sample partition(RSP)is a newly developed big data representation and management model to deal with big data approximate computation problems.Academic research and practical applications have confirmed that RSP is an efficient solution for big data processing and analysis.However,a challenge for implementing RSP is determining an appropriate sample size for RSP data blocks.While a large sample size increases the burden of big data computation,a small size will lead to insufficient distribution information for RSP data blocks.To address this problem,this paper presents a novel density estimation-based method(DEM)to determine the optimal sample size for RSP data blocks.First,a theoretical sample size is calculated based on the multivariate Dvoretzky-Kiefer-Wolfowitz(DKW)inequality by using the fixed-point iteration(FPI)method.Second,a practical sample size is determined by minimizing the validation error of a kernel density estimator(KDE)constructed on RSP data blocks for an increasing sample size.Finally,a series of persuasive experiments are conducted to validate the feasibility,rationality,and effectiveness of DEM.Experimental results show that(1)the iteration function of the FPI method is convergent for calculating the theoretical sample size from the multivariate DKW inequality;(2)the KDE constructed on RSP data blocks with sample size determined by DEM can yield a good approximation of the probability density function(p.d.f);and(3)DEM provides more accurate sample sizes than the existing sample size determination methods from the perspective of p.d.f.estimation.This demonstrates that DEM is a viable approach to deal with the sample size determination problem for big data RSP implementation. 展开更多
关键词 _random sample partition big data sample size Dvoretzky-Kiefer-Wolfowitz inequality kerneldensity estimator probability density function
原文传递
Research on the Encapsulation Device for Lunar Samples
4
作者 Yonggang Du Chunyong Wang +3 位作者 Haoling Li Ying Zhou Ming Ji Xuesong Wang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第3期104-117,共14页
The encapsulation of lunar samples is a core research area in the third phase of the Chinese Lunar Exploration Program.The seal assembly,opening and closing mechanism(OCM),and locking mechanism are the core components... The encapsulation of lunar samples is a core research area in the third phase of the Chinese Lunar Exploration Program.The seal assembly,opening and closing mechanism(OCM),and locking mechanism are the core components of the encapsulation device of the lunar samples,and the requirements of a tight seal,lightweight,and low power make the design of these core components difficult.In this study,a combined sealing assembly,OCM,and locking mechanism were investigated for the device.The sealing architecture consists of rubber and an Ag-In alloy,and a theory was built to analyze the seal.Experiments of the electroplate Au coating on the knife-edge revealed that the hermetic seal can be significantly improved.The driving principle for coaxial double-helical pairs was investigated and used to design the OCM.Moreover,a locking mechanism was created using an electric initiating explosive device with orifice damping.By optimizing the design,the output parameters were adjusted to meet the requirements of the lunar explorer.The experimental results showed that the helium leak rate of the test pieces were not more than 5×10^(-11) Pa·m^(3)·s^(-1),the minimum power of the OCM was 0.3 W,and the total weight of the principle prototype was 2.9 kg.The explosive driven locking mechanism has low impact.This investigation solved the difficulties in achieving tight seal,light weight,and low power for the lunar explorer,and the results can also be used to explore other extraterrestrial objects in the future. 展开更多
关键词 Lunar samples ENCAPSULATION Vacuum seal MECHANISM
下载PDF
Effectiveness of Histopathological Examination of Ultrasound-guided Puncture Biopsy Samples for Diagnosis of Extrapulmonary Tuberculosis
5
作者 GU Wen Fei SHI Xia +5 位作者 MA Xin YU Jun Lei XU Jin Chuan QIAN Cheng Cheng HU Zhi Dong ZHANG Hui 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2024年第2期170-177,共8页
Objective To evaluate the diagnostic value of histopathological examination of ultrasound-guided puncture biopsy samples in extrapulmonary tuberculosis(EPTB).Methods This study was conducted at the Shanghai Public Hea... Objective To evaluate the diagnostic value of histopathological examination of ultrasound-guided puncture biopsy samples in extrapulmonary tuberculosis(EPTB).Methods This study was conducted at the Shanghai Public Health Clinical Center.A total of 115patients underwent ultrasound-guided puncture biopsy,followed by MGIT 960 culture(culture),smear,Gene Xpert MTB/RIF(Xpert),and histopathological examination.These assays were performed to evaluate their effectiveness in diagnosing EPTB in comparison to two different diagnostic criteria:liquid culture and composite reference standard(CRS).Results When CRS was used as the reference standard,the sensitivity and specificity of culture,smear,Xpert,and histopathological examination were(44.83%,89.29%),(51.72%,89.29%),(70.11%,96.43%),and(85.06%,82.14%),respectively.Based on liquid culture tests,the sensitivity and specificity of smear,Xpert,and pathological examination were(66.67%,72.60%),(83.33%,63.01%),and(92.86%,45.21%),respectively.Histopathological examination showed the highest sensitivity but lowest specificity.Further,we found that the combination of Xpert and histopathological examination showed a sensitivity of 90.80%and a specificity of 89.29%.Conclusion Ultrasound-guided puncture sampling is safe and effective for the diagnosis of EPTB.Compared with culture,smear,and Xpert,histopathological examination showed higher sensitivity but lower specificity.The combination of histopathology with Xpert showed the best performance characteristics. 展开更多
关键词 Extrapulmonary tuberculosis DIAGNOSIS BIOPSY Histopathological examination Puncture samples
下载PDF
Effect of sample temperature on femtosecond laser ablation of copper
6
作者 党伟杰 陈雨桐 +1 位作者 陈安民 金明星 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期377-385,共9页
We conduct an experimental study supported by theoretical analysis of single laser ablating copper to investigate the interactions between laser and material at different sample temperatures,and predict the changes of... We conduct an experimental study supported by theoretical analysis of single laser ablating copper to investigate the interactions between laser and material at different sample temperatures,and predict the changes of ablation morphology and lattice temperature.For investigating the effect of sample temperature on femtosecond laser processing,we conduct experiments on and simulate the thermal behavior of femtosecond laser irradiating copper by using a two-temperature model.The simulation results show that both electron peak temperature and the relaxation time needed to reach equilibrium increase as initial sample temperature rises.When the sample temperature rises from 300 K to 600 K,the maximum lattice temperature of the copper surface increases by about 6500 K under femtosecond laser irradiation,and the ablation depth increases by 20%.The simulated ablation depths follow the same general trend as the experimental values.This work provides some theoretical basis and technical support for developing femtosecond laser processing in the field of metal materials. 展开更多
关键词 femtosecond laser two-temperature model sample temperature ablation depth
下载PDF
A Railway Fastener Inspection Method Based on Abnormal Sample Generation
7
作者 Shubin Zheng Yue Wang +3 位作者 Liming Li Xieqi Chen Lele Peng Zhanhao Shang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期565-592,共28页
Regular fastener detection is necessary to ensure the safety of railways.However,the number of abnormal fasteners is significantly lower than the number of normal fasteners in real railways.Existing supervised inspect... Regular fastener detection is necessary to ensure the safety of railways.However,the number of abnormal fasteners is significantly lower than the number of normal fasteners in real railways.Existing supervised inspectionmethods have insufficient detection ability in cases of imbalanced samples.To solve this problem,we propose an approach based on deep convolutional neural networks(DCNNs),which consists of three stages:fastener localization,abnormal fastener sample generation based on saliency detection,and fastener state inspection.First,a lightweight YOLOv5s is designed to achieve fast and precise localization of fastener regions.Then,the foreground clip region of a fastener image is extracted by the designed fastener saliency detection network(F-SDNet),combined with data augmentation to generate a large number of abnormal fastener samples and balance the number of abnormal and normal samples.Finally,a fastener inspection model called Fastener ResNet-8 is constructed by being trained with the augmented fastener dataset.Results show the effectiveness of our proposed method in solving the problem of sample imbalance in fastener detection.Qualitative and quantitative comparisons show that the proposed F-SDNet outperforms other state-of-the-art methods in clip region extraction,reaching MAE and max F-measure of 0.0215 and 0.9635,respectively.In addition,the FPS of the fastener state inspection model reached 86.2,and the average accuracy reached 98.7%on 614 augmented fastener test sets and 99.9%on 7505 real fastener datasets. 展开更多
关键词 Railway fastener sample generation inspection model deep learning
下载PDF
Exploring device physics of perovskite solar cell via machine learning with limited samples
8
作者 Shanshan Zhao Jie Wang +8 位作者 Zhongli Guo Hongqiang Luo Lihua Lu Yuanyuan Tian Zhuoying Jiang Jing Zhang Mengyu Chen Lin Li Cheng Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期441-448,共8页
Perovskite solar cells(PsCs)have developed tremendously over the past decade.However,the key factors influencing the power conversion efficiency(PCE)of PSCs remain incompletely understood,due to the complexity and cou... Perovskite solar cells(PsCs)have developed tremendously over the past decade.However,the key factors influencing the power conversion efficiency(PCE)of PSCs remain incompletely understood,due to the complexity and coupling of these structural and compositional parameters.In this research,we demon-strate an effective approach to optimize PSCs performance via machine learning(ML).To address chal-lenges posed by limited samples,we propose a feature mask(FM)method,which augments training samples through feature transformation rather than synthetic data.Using this approach,squeeze-and-excitation residual network(SEResNet)model achieves an accuracy with a root-mean-square-error(RMSE)of 0.833%and a Pearson's correlation coefficient(r)of 0.980.Furthermore,we employ the permu-tation importance(PI)algorithm to investigate key features for PCE.Subsequently,we predict PCE through high-throughput screenings,in which we study the relationship between PCE and chemical com-positions.After that,we conduct experiments to validate the consistency between predicted results by ML and experimental results.In this work,ML demonstrates the capability to predict device performance,extract key parameters from complex systems,and accelerate the transition from laboratory findings to commercialapplications. 展开更多
关键词 Perovskite solar cell Machine learning Device physics Performance prediction Limited samples
下载PDF
A Fault Detection Method for Electric Vehicle Battery System Based on Bayesian Optimization SVDD Considering a Few Faulty Samples
9
作者 Miao Li Fanyong Cheng +2 位作者 Jiong Yang Maxwell Mensah Duodu Hao Tu 《Energy Engineering》 EI 2024年第9期2543-2568,共26页
Accurate and reliable fault detection is essential for the safe operation of electric vehicles.Support vector data description(SVDD)has been widely used in the field of fault detection.However,constructing the hypersp... Accurate and reliable fault detection is essential for the safe operation of electric vehicles.Support vector data description(SVDD)has been widely used in the field of fault detection.However,constructing the hypersphere boundary only describes the distribution of unlabeled samples,while the distribution of faulty samples cannot be effectively described and easilymisses detecting faulty data due to the imbalance of sample distribution.Meanwhile,selecting parameters is critical to the detection performance,and empirical parameterization is generally timeconsuming and laborious and may not result in finding the optimal parameters.Therefore,this paper proposes a semi-supervised data-driven method based on which the SVDD algorithm is improved and achieves excellent fault detection performance.By incorporating faulty samples into the underlying SVDD model,training deals better with the problem of missing detection of faulty samples caused by the imbalance in the distribution of abnormal samples,and the hypersphere boundary ismodified to classify the samplesmore accurately.The Bayesian Optimization NSVDD(BO-NSVDD)model was constructed to quickly and accurately optimize hyperparameter combinations.In the experiments,electric vehicle operation data with four common fault types are used to evaluate the performance with other five models,and the results show that the BO-NSVDD model presents superior detection performance for each type of fault data,especially in the imperceptible early and minor faults,which has seen very obvious advantages.Finally,the strong robustness of the proposed method is verified by adding different intensities of noise in the dataset. 展开更多
关键词 Fault detection vehicle battery system lithium batteries fault samples
下载PDF
Robust adaptive radar beamforming based on iterative training sample selection using kurtosis of generalized inner product statistics
10
作者 TIAN Jing ZHANG Wei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2024年第1期24-30,共7页
In engineering application,there is only one adaptive weights estimated by most of traditional early warning radars for adaptive interference suppression in a pulse reputation interval(PRI).Therefore,if the training s... In engineering application,there is only one adaptive weights estimated by most of traditional early warning radars for adaptive interference suppression in a pulse reputation interval(PRI).Therefore,if the training samples used to calculate the weight vector does not contain the jamming,then the jamming cannot be removed by adaptive spatial filtering.If the weight vector is constantly updated in the range dimension,the training data may contain target echo signals,resulting in signal cancellation effect.To cope with the situation that the training samples are contaminated by target signal,an iterative training sample selection method based on non-homogeneous detector(NHD)is proposed in this paper for updating the weight vector in entire range dimension.The principle is presented,and the validity is proven by simulation results. 展开更多
关键词 adaptive radar beamforming training sample selection non-homogeneous detector electronic jamming jamming suppression
下载PDF
Mechanical behavior of 2G NPR bolt anchored rock samples under static disturbance loading
11
作者 WANG Jiong JIANG Jian +4 位作者 WANG Siyu CHANG Yiwen LIU Peng HE Manchao CHENG Shuang 《Journal of Mountain Science》 SCIE CSCD 2024年第7期2494-2516,共23页
The deep mining of coal resources is accompanied by severe environmental challenges and various potential engineering hazards.The implementation of NPR(negative Poisson's ratio)bolts are capable of controlling lar... The deep mining of coal resources is accompanied by severe environmental challenges and various potential engineering hazards.The implementation of NPR(negative Poisson's ratio)bolts are capable of controlling large deformations in the surrounding rock effectively.This paper focuses on studying the mechanical properties of the NPR bolt under static disturbance load.The deep nonlinear mechanical experimental system was used to study the mechanical behavior of rock samples with different anchored types(unanchored/PR anchored/2G NPR anchored)under static disturbance load.The whole process of rock samples was taken by high-speed camera to obtain the real-time failure characteristics under static disturbance load.At the same time,the acoustic emission signal was collected to obtain the key characteristic parameters of acoustic emission such as acoustic emission count,energy,and frequency.The deformation at the failure of the samples was calculated and analyzed by digital speckle software.The findings indicate that the failure mode of rock is influenced by different types of anchoring.The peak failure strength of 2G NPR bolt anchored rock samples exhibits an increase of 6.5%when compared to the unanchored rock samples.The cumulative count and cumulative energy of acoustic emission exhibit a decrease of 62.16%and 62.90%,respectively.The maximum deformation of bearing capacity exhibits an increase of 59.27%,while the failure time demonstrates a delay of 42.86%.The peak failure strength of the 2G NPR bolt anchored ones under static disturbance load exhibits an increase of 5.94%when compared to the rock anchored by PR(Poisson's ratio)bolt.The cumulative count and cumulative energy of acoustic emission exhibit a decrease of 47.16%and 43.86%,respectively.The maximum deformation of the bearing capacity exhibits an increase of 50.43%,and the failure time demonstrates a delay of 32%.After anchoring by 2G NPR bolt,anchoring support effectively reduces the risk of damage caused by static disturbance load.These results demonstrate that the support effect of 2G NPR bolt materials surpasses that of PR bolt. 展开更多
关键词 Anchored rock samples Static disturbance load Acoustic emission characteristics Digital speckle Negative Poisson's ratio
下载PDF
Rockburst proneness considering energy characteristics and sample shape effects
12
作者 Song Luo Fengqiang Gong +1 位作者 Kang Peng Zhixiang Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第7期2441-2465,共25页
Accurate prediction of rockburst proneness is one of challenges for assessing the rockburst risk and selecting effective control measures.This study aims to assess rockburst proneness by considering the energy charact... Accurate prediction of rockburst proneness is one of challenges for assessing the rockburst risk and selecting effective control measures.This study aims to assess rockburst proneness by considering the energy characteristics and qualitative information during rock failure.Several representative rock types in cylindrical and cuboidal sample shapes were tested under uniaxial compression conditions and the failure progress was detected by a high-speed camera.The far-field ejection mass ratio(FEMR)was determined considering the qualitative failure information of the rock samples.The peak-strength energy impact index and the residual elastic energy index were used to quantitatively evaluate the rockburst proneness of both cylindrical and cuboidal samples.Further,the performance of these two indices was analyzed by comparing their estimates with the FEMR.The results show that the accuracy of the residual elastic energy index is significantly higher than that of the peak-strength energy impact index.The residual elastic energy index and the FEMR are in good agreement for both cylindrical and cuboidal rock materials.This is because these two indices can essentially reflect the common energy release mechanism characterized by the mass,ejection velocity,and ejection distance of rock fragments.It suggests that both the FEMR and the residual elastic energy index can be used to accurately measure the rockburst proneness of cylindrical and cuboidal samples based on uniaxial compression test. 展开更多
关键词 Rockburst proneness sample shape Strain energy Energy release Far-field ejection mass ratio(FEMR)
下载PDF
Research on aiming methods for small sample size shooting tests of two-dimensional trajectory correction fuse
13
作者 Chen Liang Qiang Shen +4 位作者 Zilong Deng Hongyun Li Wenyang Pu Lingyun Tian Ziyang Lin 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期506-517,共12页
The longitudinal dispersion of the projectile in shooting tests of two-dimensional trajectory corrections fused with fixed canards is extremely large that it sometimes exceeds the correction ability of the correction ... The longitudinal dispersion of the projectile in shooting tests of two-dimensional trajectory corrections fused with fixed canards is extremely large that it sometimes exceeds the correction ability of the correction fuse actuator.The impact point easily deviates from the target,and thus the correction result cannot be readily evaluated.However,the cost of shooting tests is considerably high to conduct many tests for data collection.To address this issue,this study proposes an aiming method for shooting tests based on small sample size.The proposed method uses the Bootstrap method to expand the test data;repeatedly iterates and corrects the position of the simulated theoretical impact points through an improved compatibility test method;and dynamically adjusts the weight of the prior distribution of simulation results based on Kullback-Leibler divergence,which to some extent avoids the real data being"submerged"by the simulation data and achieves the fusion Bayesian estimation of the dispersion center.The experimental results show that when the simulation accuracy is sufficiently high,the proposed method yields a smaller mean-square deviation in estimating the dispersion center and higher shooting accuracy than those of the three comparison methods,which is more conducive to reflecting the effect of the control algorithm and facilitating test personnel to iterate their proposed structures and algorithms.;in addition,this study provides a knowledge base for further comprehensive studies in the future. 展开更多
关键词 Two-dimensional trajectory correction fuse Small sample size test Compatibility test KL divergence Fusion bayesian estimation
下载PDF
Selective sampling with Gromov–Hausdorff metric:Efficient dense-shape correspondence via Confidence-based sample consensus
14
作者 Dvir GINZBURG Dan RAVIV 《虚拟现实与智能硬件(中英文)》 EI 2024年第1期30-42,共13页
Background Functional mapping, despite its proven efficiency, suffers from a “chicken or egg” scenario, in that, poor spatial features lead to inadequate spectral alignment and vice versa during training, often resu... Background Functional mapping, despite its proven efficiency, suffers from a “chicken or egg” scenario, in that, poor spatial features lead to inadequate spectral alignment and vice versa during training, often resulting in slow convergence, high computational costs, and learning failures, particularly when small datasets are used. Methods A novel method is presented for dense-shape correspondence, whereby the spatial information transformed by neural networks is combined with the projections onto spectral maps to overcome the “chicken or egg” challenge by selectively sampling only points with high confidence in their alignment. These points then contribute to the alignment and spectral loss terms, boosting training, and accelerating convergence by a factor of five. To ensure full unsupervised learning, the Gromov–Hausdorff distance metric was used to select the points with the maximal alignment score displaying most confidence. Results The effectiveness of the proposed approach was demonstrated on several benchmark datasets, whereby results were reported as superior to those of spectral and spatial-based methods. Conclusions The proposed method provides a promising new approach to dense-shape correspondence, addressing the key challenges in the field and offering significant advantages over the current methods, including faster convergence, improved accuracy, and reduced computational costs. 展开更多
关键词 Dense-shape correspondence Spatial information Neural networks Spectral maps Selective sampling
下载PDF
Frequentist and Bayesian Sample Size Determination for Single-Arm Clinical Trials Based on a Binary Response Variable: A Shiny App to Implement Exact Methods
15
作者 Susanna Gentile Valeria Sambucini 《Open Journal of Statistics》 2024年第1期90-105,共16页
Sample size determination typically relies on a power analysis based on a frequentist conditional approach. This latter can be seen as a particular case of the two-priors approach, which allows to build four distinct ... Sample size determination typically relies on a power analysis based on a frequentist conditional approach. This latter can be seen as a particular case of the two-priors approach, which allows to build four distinct power functions to select the optimal sample size. We revise this approach when the focus is on testing a single binomial proportion. We consider exact methods and introduce a conservative criterion to account for the typical non-monotonic behavior of the power functions, when dealing with discrete data. The main purpose of this paper is to present a Shiny App providing a user-friendly, interactive tool to apply these criteria. The app also provides specific tools to elicit the analysis and the design prior distributions, which are the core of the two-priors approach. 展开更多
关键词 Binomial Proportion Frequentist and Bayesian Power Functions Exact sample Size Determination Shiny App Two-Priors Approach
下载PDF
Calculation of Two-Tailed Exact Probability in the Wald-Wolfowitz One-Sample Runs Test
16
作者 José Moral De La Rubia 《Journal of Data Analysis and Information Processing》 2024年第1期89-114,共26页
The objectives of this paper are to demonstrate the algorithms employed by three statistical software programs (R, Real Statistics using Excel, and SPSS) for calculating the exact two-tailed probability of the Wald-Wo... The objectives of this paper are to demonstrate the algorithms employed by three statistical software programs (R, Real Statistics using Excel, and SPSS) for calculating the exact two-tailed probability of the Wald-Wolfowitz one-sample runs test for randomness, to present a novel approach for computing this probability, and to compare the four procedures by generating samples of 10 and 11 data points, varying the parameters n<sub>0</sub> (number of zeros) and n<sub>1</sub> (number of ones), as well as the number of runs. Fifty-nine samples are created to replicate the behavior of the distribution of the number of runs with 10 and 11 data points. The exact two-tailed probabilities for the four procedures were compared using Friedman’s test. Given the significant difference in central tendency, post-hoc comparisons were conducted using Conover’s test with Benjamini-Yekutielli correction. It is concluded that the procedures of Real Statistics using Excel and R exhibit some inadequacies in the calculation of the exact two-tailed probability, whereas the new proposal and the SPSS procedure are deemed more suitable. The proposed robust algorithm has a more transparent rationale than the SPSS one, albeit being somewhat more conservative. We recommend its implementation for this test and its application to others, such as the binomial and sign test. 展开更多
关键词 RANDOMNESS Nonparametric Test Exact Probability Small samples QUANTILES
下载PDF
Stochastic sampled-data multi-objective control of active suspension systems for in-wheel motor driven electric vehicles
17
作者 Iftikhar Ahmad Xiaohua Ge Qing-Long Han 《Journal of Automation and Intelligence》 2024年第1期2-18,共17页
This paper addresses the sampled-data multi-objective active suspension control problem for an in-wheel motor driven electric vehicle subject to stochastic sampling periods and asynchronous premise variables.The focus... This paper addresses the sampled-data multi-objective active suspension control problem for an in-wheel motor driven electric vehicle subject to stochastic sampling periods and asynchronous premise variables.The focus is placed on the scenario that the dynamical state of the half-vehicle active suspension system is transmitted over an in-vehicle controller area network that only permits the transmission of sampled data packets.For this purpose,a stochastic sampling mechanism is developed such that the sampling periods can randomly switch among different values with certain mathematical probabilities.Then,an asynchronous fuzzy sampled-data controller,featuring distinct premise variables from the active suspension system,is constructed to eliminate the stringent requirement that the sampled-data controller has to share the same grades of membership.Furthermore,novel criteria for both stability analysis and controller design are derived in order to guarantee that the resultant closed-loop active suspension system is stochastically stable with simultaneous𝐻2 and𝐻∞performance requirements.Finally,the effectiveness of the proposed stochastic sampled-data multi-objective control method is verified via several numerical cases studies in both time domain and frequency domain under various road disturbance profiles. 展开更多
关键词 Active suspension system Electric vehicles In-wheel motor Stochastic sampling Dynamic dampers sampled-data control Multi-objective control
下载PDF
Design and Research on Identification of Typical Tea Plant Diseases Using Small Sample Learning
18
作者 Jian Yang 《Journal of Electronic Research and Application》 2024年第5期21-25,共5页
Tea plants are susceptible to diseases during their growth.These diseases seriously affect the yield and quality of tea.The effective prevention and control of diseases requires accurate identification of diseases.Wit... Tea plants are susceptible to diseases during their growth.These diseases seriously affect the yield and quality of tea.The effective prevention and control of diseases requires accurate identification of diseases.With the development of artificial intelligence and computer vision,automatic recognition of plant diseases using image features has become feasible.As the support vector machine(SVM)is suitable for high dimension,high noise,and small sample learning,this paper uses the support vector machine learning method to realize the segmentation of disease spots of diseased tea plants.An improved Conditional Deep Convolutional Generation Adversarial Network with Gradient Penalty(C-DCGAN-GP)was used to expand the segmentation of tea plant spots.Finally,the Visual Geometry Group 16(VGG16)deep learning classification network was trained by the expanded tea lesion images to realize tea disease recognition. 展开更多
关键词 Small sample learning Tea plant disease VGG16 deep learning
下载PDF
基于“SAMPLE”的高校网络课程群教学改革 被引量:3
19
作者 林秦颖 南建国 +1 位作者 顾文灿 寇雅楠 《计算机教育》 2011年第19期59-62,共4页
信息时代对信息化人才的培养提出了更高要求,以网络为核心的信息技术将成为下一代计算机基础教育中的重要组成部分。本文在《高等学校计算机基础教育发展战略研究暨计算机基础教学基本要求》的指引下,分析网络类课程教育现状,结合多年... 信息时代对信息化人才的培养提出了更高要求,以网络为核心的信息技术将成为下一代计算机基础教育中的重要组成部分。本文在《高等学校计算机基础教育发展战略研究暨计算机基础教学基本要求》的指引下,分析网络类课程教育现状,结合多年网络类课程的教学体会及前期教学改革成果,整合教学内容,构建了多维网络课程群实验教学平台,采用协同式教学方法,探索了信息化人才培养的关键性问题,取得了良好成果。 展开更多
关键词 sample 教学改革 课程群 协同式
下载PDF
Community Structure and Diversity Distributions of Small Mammals in Different Sample Plots in the Eastern Part of Wuling Mountains 被引量:13
20
作者 刘井元 杜红 +3 位作者 田耕百 余品红 王身文 彭红 《Zoological Research》 CAS CSCD 北大核心 2008年第6期637-645,共9页
Five years' (2000-2004) continuous study has been carried out on small mammals such as rodents in seven different sample plots, at three different altitudes and in six different ecological environment types in the ... Five years' (2000-2004) continuous study has been carried out on small mammals such as rodents in seven different sample plots, at three different altitudes and in six different ecological environment types in the eastern part of the Wuling Mountains, south bank of the Three Gorges of Yangtze River in Hubei. A total of 29 297 rat clamps/times were placed and 2271 small mammals such as rodents were captured, and 26 small mammals were captured by other means. All the small mammals captured belonged to 8 families 19 genera and 24 species, of which rodentia accounted for 70.83% and insectivora 29.17%. Through analysis of the data, the results showed that: 1 ) although the species richness had a trend of increasing along different sample plots as altitude increased from south to north, quite a few species showed a wide habitat range in a vertical distribution ( 15 species were dispersed over three zones and two species over two zones) , indicating a strong adaptability of small mammals such as rOdents at lower altitudes in most areas and comparatively less vertical span of entire mountains; 2) whether in seven different sample plots or six different ecological types, Apodemus agrarius and Rattus norvegicus were dominant species below 1200m, and Anourosorex squamipes, Niviventer confucianus and Apodemus draco were dominant above altitudes of 1300m, however, in quantity they were short of identical regularity, meaning they did not increase as the altitude did, or decrease as the ecological areas changed; 3)the density in winter was obviously greater than that in spring, and the distribution showed an increasing trend along with altitude, but the density in different sample plots was short of identical regularity, showing changes in different seasons and altitude grades had an important impact on small mammals such as rodents; 4) in species diversity and evenness index, there were obvious changes between the seven different sample plots, probably caused by frequent human interference in this area. Comparatively speaking, there was less human interference at high altitudes where vegetation was rich and had a high diversity and evenness index, and the boundary effect and community stability were obvious. Most ecological types have been seriously interfered with due to excessive assart at low altitudes with singular vegetation and low diversity and evenness index and poor community stability, showing an ecosystem with poor anti-reversion. If human interference can be reduced in those communities at high altitudes with low diversity and evenness index, the biological diversity in the communities will gradually recover to similar levels of other ecological areas. 展开更多
关键词 Small mammals Community structure Species diversity sample plots Eastern part of Wuling Mountains
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部