期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Modified constructions of binary sequences using multiplicative inverse
1
作者 CHEN Zhi-xiong LIN Zhi-xing 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2008年第4期490-500,共11页
Two new families of finite binary sequences are constructed using multiplicative inverse. The sequences are shown to have strong pseudorandom properties by using some estimates of certain exponential sums over finite ... Two new families of finite binary sequences are constructed using multiplicative inverse. The sequences are shown to have strong pseudorandom properties by using some estimates of certain exponential sums over finite fields. The constructions can be implemented fast since multiplicative inverse over finite fields can be computed in polynomial time. 展开更多
关键词 stream cipher binary sequence multiplicative inverse PSEUDORANDOMNESS exponential sum
下载PDF
A high resolution inversion method for fluid factor with dynamic dryrock V_(P)/V_(S) ratio squared
2
作者 Lin Zhou Jian-Ping Liao +3 位作者 Xing-Ye Liu Pu Wang Ya-Nan Guo Jing-Ye Li 《Petroleum Science》 SCIE EI CSCD 2023年第5期2822-2834,共13页
As an important indicator parameter of fluid identification,fluid factor has always been a concern for scholars.However,when predicting Russell fluid factor or effective pore-fluid bulk modulus,it is necessary to intr... As an important indicator parameter of fluid identification,fluid factor has always been a concern for scholars.However,when predicting Russell fluid factor or effective pore-fluid bulk modulus,it is necessary to introduce a new rock skeleton parameter which is the dry-rock VP/VS ratio squared(DVRS).In the process of fluid factor calculation or inversion,the existing methods take this parameter as a static constant,which has been estimated in advance,and then apply it to the fluid factor calculation and inversion.The fluid identification analysis based on a portion of the Marmousi 2 model and numerical forward modeling test show that,taking the DVRS as a static constant will limit the identification ability of fluid factor and reduce the inversion accuracy.To solve the above problems,we proposed a new method to regard the DVRS as a dynamic variable varying with depth and lithology for the first time,then apply it to fluid factor calculation and inversion.Firstly,the exact Zoeppritz equations are rewritten into a new form containing the fluid factor and DVRS of upper and lower layers.Next,the new equations are applied to the four parameters simultaneous inversion based on the generalized nonlinear inversion(GNI)method.The testing results on a portion of the Marmousi 2 model and field data show that dynamic DVRS can significantly improve the fluid factor identification ability,effectively suppress illusion.Both synthetic and filed data tests also demonstrate that the GNI method based on Bayesian deterministic inversion(BDI)theory can successfully solve the above four parameter simultaneous inversion problem,and taking the dynamic DVRS as a target inversion parameter can effectively improve the inversion accuracy of fluid factor.All these results completely verified the feasibility and effectiveness of the proposed method. 展开更多
关键词 Fluid factor Dry-rock V_(P)/V_(S)ratio squared(DVRS) Dynamic variable Multiple parameters simultaneous inversion Generalized nonlinear inversion(GNI)
下载PDF
REESSE Unified Recursive Algorithm for Solving Three Computational Problems
3
作者 SU Shenghui YANG Bingru 《Wuhan University Journal of Natural Sciences》 CAS 2007年第1期172-176,共5页
Different from the extended Euclidean algorithm which can compute directly only the multiplicative inverse of an element in Zm^* and the greatest common divisor of two integers, a recursive algorithm called REESSE is... Different from the extended Euclidean algorithm which can compute directly only the multiplicative inverse of an element in Zm^* and the greatest common divisor of two integers, a recursive algorithm called REESSE is designed by the authors, which can not only seek directly the multiplicative inverse and the greatest common divisor, but also solve directly a simple congruence for general solutions. This paper presents the definition and the two valuable properties of a simple congruence, analyzes in detail the reduction and recursion process of solving simple congruences, induces the recursive formula for solving simple congruences, and describes formally and implements in C language the recursive algorithm. At last, the paper compares REESSE with the extended Euclidean algorithm in thought, applicability and time complexity. 展开更多
关键词 simple congruence recursive algorithm general solution multiplicative inverse greatest common divisor
下载PDF
Multiplicity of solutions to geophysical inversion reflected by rupture slip distribution of the 2015 Nepal earthquake 被引量:2
4
作者 Kai Tan Caihong Zhang +5 位作者 Bin Zhao Qi Wang Ruilin Du Rui Zhang Xuejun Qiao Yong Huang 《Geodesy and Geodynamics》 2017年第1期59-69,共11页
The equivalence of geophysical fields, the finiteness of measurements and the measurement errors make the result of geophysical inversion non-unique. For example, the measurements and inversion method used, the priori... The equivalence of geophysical fields, the finiteness of measurements and the measurement errors make the result of geophysical inversion non-unique. For example, the measurements and inversion method used, the priori rupture model determined and the slip distribution smoothing factor selected will have significant influences on the earthquake rupture slip distribution. Using different data and methods, different authors have given different rupture slip distribution models of the 2015 Mw7.9 Nepal earth- quake, with the maximum slip ranging from 3.0 m to 6.8 m. In this paper, geometry parameters of the single rectangular fault model in elastic half-space were inferred constraining with the Global Posi- tioning System (GPS) and Interferometric Synthetic Aperture Radar (InSAR) coseismic deformations and bounding the slip with approximate average value; and then, the single rectangular fault was divided into multiple sub-faults, and the final slip smoothing factor, the final slip distribution and the maximum slip were determined with the misfit-roughness tradeoff curve, the cross-validation sum of squares (CVSS) and the third-party observation data or indexes being comprehensively taken into account. The results show that, the rupture of the Nepal earthquake extended by over 100 km east by south. The maximum slip of the earthquake was about 6.5-6.7 m, and most of the slip is confined at depths of 8 -20 kin, consistent with the depth distribution of aftershocks. The method for reducing the multiplicity of solutions to rupture slip distribution in this paper was ever used in inversion of rupture slip distri- bution for the 2008 Wenchuan and 2013 Lushan earthquakes, and the third-party measurement - surface dislocation has very large effect on reducing the multiplicity of solutions to inversion of the Wenchuan earthquake. Other priori information or indicators, such as fault strike, dip, earthquake magnitude, seismic activity, Coulomb stress, and seismic period, can be used for beneficial validation of and comparison with inversion results. 展开更多
关键词 Multiplicity of inversion solutions Nepal earthquake Coseismic deformation Rupture slip distribution
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部