3,4-Bis(4'-aminofurazano-3')furoxan(DATF), one of a new generation of high energy density materials, shows lots of interesting properties such as lower sensitivity, excellent thermal stability and superior deton...3,4-Bis(4'-aminofurazano-3')furoxan(DATF), one of a new generation of high energy density materials, shows lots of interesting properties such as lower sensitivity, excellent thermal stability and superior detonation perfor- mance in chemistry and physics. In this paper, on-line infrared(IR) spectroscopy was used to monitor the synthesis process of DATF. The concentration profiles and IR spectra of the components were determined by analyzing the IR data via principal component analysis(PCA), evolving factor analysis(EFA) and multivariate curve resolution-alternating least squares(MCR-ALS). The geometric configurations of reactant, intermediates and product were optimized with the density functional theory(DFT) at B3LYP/6-3 l+G(d, p) level. Their vibrational frequencies and IR spectra were obtained on the basis of vibrational analysis. The result obtained by the chemometric resolution methods agreed well with that obtained by quantum chemical calculation method, which demonstrated the reliability of the proposed chemometric resolution methods. The unstable intermediate 3-amino-4-oxycyanofurazan(AOF) was confirmed via comparing the IR spectra resloved by chemometric resolution methods with those calculated by B3LYP/6-3 l+G(d,p) and analyzed by MCR-ALS. Finally, the possible synthesis mechanism of DATF was deduced by analyzing the above IR spectra.展开更多
目的:应用多元曲线分辨-交替最小二乘(MCR-ALS)法,对7-乙基-10-羟基喜树碱与喜树碱的色谱重叠峰进行分辨,并对杂质喜树碱进行定量。方法:以渐进因子分析(EFA)解析结果作为初始值对喜树碱与7-乙基-10-羟基喜树碱的色谱重叠峰进行 ALS 迭...目的:应用多元曲线分辨-交替最小二乘(MCR-ALS)法,对7-乙基-10-羟基喜树碱与喜树碱的色谱重叠峰进行分辨,并对杂质喜树碱进行定量。方法:以渐进因子分析(EFA)解析结果作为初始值对喜树碱与7-乙基-10-羟基喜树碱的色谱重叠峰进行 ALS 迭代优化,直至收敛。结果:采用此方法分辨所得光谱还原率高,定量结果的浓度值与真实值之间线性关系良好。结论:本方法用于药物色谱重叠峰分辨结果可靠。展开更多
The performance of different chemometric approaches was evaluated in the spectrophotometric determination of pharmaceutical mixtures characterized by having the amount of components with a very high ratio. Principal c...The performance of different chemometric approaches was evaluated in the spectrophotometric determination of pharmaceutical mixtures characterized by having the amount of components with a very high ratio. Principal component regression (PCR), partial least squares with one dependent variable (PLS1) or multi-dependent variables (PLS2), and multivariate curve resolution (MCR) were applied to the spectral data of a ternary mixture containing paracetamol, sodium ascorbate and chlorpheniramine (150:140:1, m/m/m), and a quaternary mixture containing paracetamol, caffeine, phenylephrine and chlorpheniramine (125:6. 25:1.25:1, m/m/m/m). The UV spectra of the calibration samples in the range of 200-320 nm were pre-treated by removing noise and useless data, and the wavelength regions having the most useful analytical information were selected using the regression coefficients calculated in the multivariate modeling. All the defined chemometric models were validated on external sample sets and then applied to commercial pharmaceutical formulations. Different data intervals, fixed at 0.5, 1.0, and 2.0 point/nm, were tested to optimize the prediction ability of the models. The best results were obtained using the PLSlcalibration models and the quantification of the species of a lower amount was sig- nificantly improved by adopting 0.5 data interval, which showed accuracy between 94.24% and 107.76%.展开更多
基金Supported by the National Natural Science Foundation of China(No.21175106) and the Specialized Research Fund for the Doctoral Program of Higher Education, China(No.20126101110019).
文摘3,4-Bis(4'-aminofurazano-3')furoxan(DATF), one of a new generation of high energy density materials, shows lots of interesting properties such as lower sensitivity, excellent thermal stability and superior detonation perfor- mance in chemistry and physics. In this paper, on-line infrared(IR) spectroscopy was used to monitor the synthesis process of DATF. The concentration profiles and IR spectra of the components were determined by analyzing the IR data via principal component analysis(PCA), evolving factor analysis(EFA) and multivariate curve resolution-alternating least squares(MCR-ALS). The geometric configurations of reactant, intermediates and product were optimized with the density functional theory(DFT) at B3LYP/6-3 l+G(d, p) level. Their vibrational frequencies and IR spectra were obtained on the basis of vibrational analysis. The result obtained by the chemometric resolution methods agreed well with that obtained by quantum chemical calculation method, which demonstrated the reliability of the proposed chemometric resolution methods. The unstable intermediate 3-amino-4-oxycyanofurazan(AOF) was confirmed via comparing the IR spectra resloved by chemometric resolution methods with those calculated by B3LYP/6-3 l+G(d,p) and analyzed by MCR-ALS. Finally, the possible synthesis mechanism of DATF was deduced by analyzing the above IR spectra.
文摘目的:应用多元曲线分辨-交替最小二乘(MCR-ALS)法,对7-乙基-10-羟基喜树碱与喜树碱的色谱重叠峰进行分辨,并对杂质喜树碱进行定量。方法:以渐进因子分析(EFA)解析结果作为初始值对喜树碱与7-乙基-10-羟基喜树碱的色谱重叠峰进行 ALS 迭代优化,直至收敛。结果:采用此方法分辨所得光谱还原率高,定量结果的浓度值与真实值之间线性关系良好。结论:本方法用于药物色谱重叠峰分辨结果可靠。
基金Ministero dell'Istruzione,dell'Universitàe della Ricerca(MIUR),Italy,for the financial support to this work,grant 60%2014
文摘The performance of different chemometric approaches was evaluated in the spectrophotometric determination of pharmaceutical mixtures characterized by having the amount of components with a very high ratio. Principal component regression (PCR), partial least squares with one dependent variable (PLS1) or multi-dependent variables (PLS2), and multivariate curve resolution (MCR) were applied to the spectral data of a ternary mixture containing paracetamol, sodium ascorbate and chlorpheniramine (150:140:1, m/m/m), and a quaternary mixture containing paracetamol, caffeine, phenylephrine and chlorpheniramine (125:6. 25:1.25:1, m/m/m/m). The UV spectra of the calibration samples in the range of 200-320 nm were pre-treated by removing noise and useless data, and the wavelength regions having the most useful analytical information were selected using the regression coefficients calculated in the multivariate modeling. All the defined chemometric models were validated on external sample sets and then applied to commercial pharmaceutical formulations. Different data intervals, fixed at 0.5, 1.0, and 2.0 point/nm, were tested to optimize the prediction ability of the models. The best results were obtained using the PLSlcalibration models and the quantification of the species of a lower amount was sig- nificantly improved by adopting 0.5 data interval, which showed accuracy between 94.24% and 107.76%.