期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Molecular Cloning,Expression,and Characterization of an Adenylyl Cyclase-associated Protein from Gossypium arboreum Fuzzless Mutant
1
作者 WANG Sheng,ZHAO Guo-hong,JIA Yin-hua,DU Xiong-ming(Cotton Research Institute,Chinese Academy of Agricultural Sciences Key Laboratory of Cotton Genetic Improvement,Ministry of Agriculture,Anyang,Henan 455000,China) 《棉花学报》 CSCD 北大核心 2008年第S1期69-,共1页
CAP,an adenylyl cyclase-associated protein,is predicted to be involved in cytoskeletal organization and signal transduction.Recently,we found that CAP may play an important role in fuzz-like fiber cell initiation in c... CAP,an adenylyl cyclase-associated protein,is predicted to be involved in cytoskeletal organization and signal transduction.Recently,we found that CAP may play an important role in fuzz-like fiber cell initiation in cotton.For the further research,we isolated two CAP homologues from wild 展开更多
关键词 Molecular Cloning Expression and Characterization of an Adenylyl Cyclase-associated Protein from Gossypium arboreum Fuzzless mutant CAP
下载PDF
Alexander disease:the road ahead 被引量:1
2
作者 María A.Pajares Elena Hernández-Gerez +1 位作者 Milos Pekny Dolores Pérez-Sala 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第10期2156-2160,共5页
Alexander disease is a rare neurodegenerative disorder caused by mutations in the glial fibrillary acidic protein,a type III intermediate filament protein expressed in astrocytes.Both early(infantile or juvenile)and a... Alexander disease is a rare neurodegenerative disorder caused by mutations in the glial fibrillary acidic protein,a type III intermediate filament protein expressed in astrocytes.Both early(infantile or juvenile)and adult onsets of the disease are known and,in both cases,astrocytes present characteristic aggregates,named Rosenthal fibers.Mutations are spread along the glial fibrillary acidic protein sequence disrupting the typical filament network in a dominant manner.Although the presence of aggregates suggests a proteostasis problem of the mutant forms,this behavior is also observed when the expression of wild-type glial fibrillary acidic protein is increased.Additionally,several isoforms of glial fibrillary acidic protein have been described to date,while the impact of the mutations on their expression and proportion has not been exhaustively studied.Moreover,the posttranslational modification patterns and/or the protein-protein interaction networks of the glial fibrillary acidic protein mutants may be altered,leading to functional changes that may modify the morphology,positioning,and/or the function of several organelles,in turn,impairing astrocyte normal function and subsequently affecting neurons.In particular,mitochondrial function,redox balance and susceptibility to oxidative stress may contribute to the derangement of glial fibrillary acidic protein mutant-expressing astrocytes.To study the disease and to develop putative therapeutic strategies,several experimental models have been developed,a collection that is in constant growth.The fact that most cases of Alexander disease can be related to glial fibrillary acidic protein mutations,together with the availability of new and more relevant experimental models,holds promise for the design and assay of novel therapeutic strategies. 展开更多
关键词 ASTROCYTES endoplasmic reticulum stress glial fibrillary acidic protein mutants metabolism misassembly MISFOLDING NEURODEGENERATION oxidative stress posttranslational modifications unfolded protein response
下载PDF
Activation In Vitro of Mutant MoFe Proteins from Azotobacter vinelandii by Reconstituent Solutions
3
作者 Huang-Ping Wang Ying Zhao +4 位作者 Shao-Min Bian Hui-Na Zhou Zhi-Gang Zhang Jin-Mao Zhu Ju-Fu Huang 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2006年第5期567-572,共6页
nifB-MoFe protein (nifB-Av1), AnifE MoFe protein (△nifE Av1) and AnifZ MoFe protein (△nifZ Av1) were obtained by chromatography on DE52, Sephacryl S-300 and Q-Sepharose columns from nifB point-mutated, nifE de... nifB-MoFe protein (nifB-Av1), AnifE MoFe protein (△nifE Av1) and AnifZ MoFe protein (△nifZ Av1) were obtained by chromatography on DE52, Sephacryl S-300 and Q-Sepharose columns from nifB point-mutated, nifE deleted and nifZ deleted mutant stains (UW45, DJ35 and DJ194) of Azotobacter vinelandii Llpmann, respectively. When complemented with nltrogenase Fe protein (Av2), AnifZ Av1 had partial activity and both nifB-Avl and △nifE Av1 had hardly any activity, but could be obviously activated by FeMoco extracted from wild-type MoFe protein (OP Av1) or △nifZ Av1. After being Incubated with excess O-phenanthrollne (O-phen) for 150 mln at 30 ℃ and subjected to chromatography on a Sephadex G-25 column In an Ar atmosphere, nifB- Av1C, △nifE Av1C and △nifZ Av1C were obtained, respectively. Based on a calculation of Fe atoms In the Ophen-Fe compound with ε 512nm = 11 100, lost Fe atoms of nifB-Av1, △nifE Av1 and △nifZ Av1 were estimated to be 1.35, 2.89 and 8.44 per molecule of protein, respectively. As a result of the Fe loss, △nifZ Av1 loses Its original activity. In the presence of both MgATP and Av2, these Fe-loslng proteins, but not the original proteins untreated with O-phen, could be significantly activated by reconstltuent solution (RS) composed of dlthlothreltol, ferric homocltrate, Na2S and Na2MoO4, or K2CrO4, or KMnO4. But In the absence of MgATP or Av2, the activation did not occur, with the exception that △nifZ AvlC was partially activated, and the activity was only 17%. These findings Indicate that: (I) △nifZ Avl with half P-cluster content Is somewhat different from FeMoco-deflclent nifB-Avl and ,△nifE Av1 with respect to protein conformation either before or after treatment with O-phen; (11) full activation of these proteins with RS requires pretreatment with O-phen and the simultaneous presence of MgATP and Av2. 展开更多
关键词 activation in vitro by reconstituent solutions Azotobacter vinelandii mutant MoFe protein nifB^- △nifE and △nifZ mutants.
原文传递
Conformation-dependent recognition of mutant HTT proteins by selective autophagy
4
《Science Foundation in China》 CAS 2017年第4期29-,共1页
With the support by the National Natural Science Foundation of China,a study led by Prof.Lu Boxun(鲁伯埙)from Fudan University demonstrates that a toxic mutant HTT species is resistant to selective autophagy,revealing... With the support by the National Natural Science Foundation of China,a study led by Prof.Lu Boxun(鲁伯埙)from Fudan University demonstrates that a toxic mutant HTT species is resistant to selective autophagy,revealing the fundamental mechanism of Huntington’s Disease.The study was published 展开更多
关键词 HTT Conformation-dependent recognition of mutant HTT proteins by selective autophagy
原文传递
Gedunin Degrades Aggregates of Mutant Huntingtin Protein and Intranuclear Inclusions via the Proteasomal Pathway in Neurons and Fibroblasts from Patients with Huntington’s Disease 被引量:2
5
作者 Weiqi Yang Jingmo Xie +9 位作者 Qiang Qiang Li Li Xiang Lin Yiqing Ren Wenlei Ren Qiong Liu Guomin Zhou Wenshi Wei Hexige Saiyin Lixiang Ma 《Neuroscience Bulletin》 SCIE CAS CSCD 2019年第6期1024-1034,共11页
Huntington's disease(HD) is a deadly neurodegenerative disease with abnormal expansion of CAG repeats in the huntingtin gene. Mutant Huntingtin protein(m HTT) forms abnormal aggregates and intranuclear inclusions ... Huntington's disease(HD) is a deadly neurodegenerative disease with abnormal expansion of CAG repeats in the huntingtin gene. Mutant Huntingtin protein(m HTT) forms abnormal aggregates and intranuclear inclusions in specific neurons, resulting in cell death. Here,we tested the ability of a natural heat-shock protein 90 inhibitor, Gedunin, to degrade transfected m HTT in Neuro-2 a cells and endogenous m HTT aggregates and intranuclear inclusions in both fibroblasts from HD patients and neurons derived from induced pluripotent stem cells from patients. Our data showed that Gedunin treatment degraded transfected m HTT in Neuro-2 a cells, endogenous m HTT aggregates and intranuclear inclusions in fibroblasts from HD patients, and in neurons derived from induced pluripotent stem cells from patients in a dose-and time-dependent manner, and its activity depended on the proteasomal pathway rather than the autophagy route. These findings also showed that although Gedunin degraded abnormal m HTT aggregates and intranuclear inclusions in cells from HD patient, it did not affect normal cells, thus providing a new perspective for using Gedunin to treat HD. 展开更多
关键词 Huntington's disease Gedunin DEGRADATION mutant Huntingtin protein
原文传递
Immunogenicity of mucosal COVID-19 vaccine candidates based on the highly attenuated vesicular stomatitis virus vector(VSV_(MT))in golden syrian hamster
6
作者 Yong Ke En Zhang +8 位作者 Jianming Guo Xiaoxiao Zhang Lei Wang Duo Chen Xinkui Fang Jianwei Zhu Feng Li Tao Sun Baohong Zhang 《Acta Pharmaceutica Sinica B》 SCIE CAS CSCD 2023年第12期4856-4874,共19页
COVID-19 is caused by coronavirus SARS-CoV-2.Current systemic vaccines generally pro-vide limited protection against viral replication and shedding within the airway.Recombinant VSV(rVSV)is an effective vector which i... COVID-19 is caused by coronavirus SARS-CoV-2.Current systemic vaccines generally pro-vide limited protection against viral replication and shedding within the airway.Recombinant VSV(rVSV)is an effective vector which inducing potent and comprehensive immunities.Currently,there are two clinical trials investigating COVID-19vaccines based on VSV vectors.These vaccines were developed with spike protein of WA1 which administrated intramuscularly.Although intranasal route is ideal for activating mucosal immunity with VSV vector,safety is of concern.Thus,a highly attenuated rVSV with three amino acids mutations in matrix protein(VSV_(MT))was developed to construct safe mucosal vaccines against multiple SARS-CoV-2 variants of concern.It demonstrated that spike protein mutant lacking 21 amino acids in its cytoplasmic domain could rescue rVSV efficiently.VSV_(MT) indicated improved safeness compared with wild-type VSV as the vector encoding SARS-CoV-2 spike protein.With a single-dosed intranasal inoculation of rVSV_(ΔGMT)-S_(Δ21),potent SARS-CoV-2specific neutraliza-tion antibodies could be stimulated in animals,particularly in term of mucosal and cellular immunity.Strikingly,the chimeric VSV encoding S_(Δ21) of Delta-variant can induce more potent immune responses compared with those encoding S_(Δ21) of Omicron-or WA1-strain.VSV_(MT) is a promising platform to develop a mucosal vaccine for countering COVID-19. 展开更多
关键词 COVID-19 Vesicular stomatitisvirus Matrix protein mutant Mucosal Vaccine Spike protein Variants of concerns Intranasal inoculation Cellular immunity
原文传递
Chaperone-mediated autophagy and neurodegeneration:connections,mechanisms,and therapeutic implications 被引量:4
7
作者 Xiaolei Liu Sihua Huang +3 位作者 Xingqin Wang Beisha Tang Wenming Li Zixu Mao 《Neuroscience Bulletin》 SCIE CAS CSCD 2015年第4期407-415,共9页
Lysosomes degrade dysfunctional intracellular components via three pathways: macroautophagy, microautophagy, and chaperone-mediated autophagy (CMA). Unlike the other two, CMA degrades cytosolic proteins with a reco... Lysosomes degrade dysfunctional intracellular components via three pathways: macroautophagy, microautophagy, and chaperone-mediated autophagy (CMA). Unlike the other two, CMA degrades cytosolic proteins with a recognized KFERQ-like motif in lysosomes and is important for cellular homeostasis. CMA activity declines with age and is altered in neurodegenerative diseases. Its impairment leads to the accumulation of aggregated proteins, some of which may be directly tied to the pathogenic processes of neurodegenerative diseases. Its induction may accelerate the clearance of pathogenic proteins and promote cell survival, representing a potential therapeutic approach for the treatment of neurodegenerative diseases. In this review, we summarize the current findings on how CMA is involved in neurodegenerative diseases, especially in Parkinson's disease. 展开更多
关键词 AUTOPHAGY chaperone-mediated autophagy neurodegenerative disorder Parkinson's disease risk factors mutant proteins therapeutic target
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部