The variant LM1 was previously obtained using embryogenic cell suspension cultures of sweetpotato variety Lizixiang by gamma-ray induced mutation, and then its characteristics were stably inherited through six clonal ...The variant LM1 was previously obtained using embryogenic cell suspension cultures of sweetpotato variety Lizixiang by gamma-ray induced mutation, and then its characteristics were stably inherited through six clonal generations, thus this mutant was named LM1. In this study, systematic characterization of salt tolerance and Fusarium wilt resistance were performed between Lizixiang and mutant LM1. LM1 exhibited significantly higher salt tolerance compared to Lizixiang. The content of proline and activities of superoxide dismutase(SOD) and photosynthesis were significantly increased, while malonaldehyde(MDA) and H_2O_2 contents were significantly decreased compared to that of Lizixiang under salt stress. The inoculation test with Fusarium wilt showed that its Fusarium wilt resistance was also improved. The lignin, total phenolic, jasmonic acid(JA) contents and SOD activity were significantly higher, while H_2O_2 content was significantly lower in LM1 than that in Lizixiang. The expression level of salt stress-responsive and disease resistance-related genes was significantly higher in LM1 than that in Lizixiang under salt and Fusarium wilt stresses, respectively. This result provides a novel and valuable material for improving the salt tolerance and Fusarium wilt resistance of sweetpotato.展开更多
Potassium(K^(+))is a necessary nutrient for plant growth and crop production.The K^(+)transporter plays crucial roles in the absorption and transport of K^(+)in plants.Most K^(+)transporters in Arabidopsis have been r...Potassium(K^(+))is a necessary nutrient for plant growth and crop production.The K^(+)transporter plays crucial roles in the absorption and transport of K^(+)in plants.Most K^(+)transporters in Arabidopsis have been reported,but AtKUP12,which is a member of the KT/KUP/HAK family,has not yet been the subject of relevant in-depth research.In the present study,we demonstrated that AtKUP12 plays a crucial role in K^(+)uptake in Arabidopsis under 100μM low-K^(+)and 125 mM salt stress conditions.AtKUP12 transcripts were induced by K^(+)deficiency and salt stress.We analyzed the K^(+)uptake of AtKUP12 using the K^(+)uptake-deficient yeast R5421 and Arabidopsis mutant atkup12.Transformation with AtKUP12 rescued the growth defect of mutant yeast and atkup12 mutant plants at the low-K^(+)concentration,which suggested that AtKUP12 might be involved in high-affinity K^(+)uptake in low-K^(+)environments.In comparison to the wild-type(WT)and atkup12-AtKUP12 complementation lines,atkup12 showed a dramatic reduction in potassium concentration,K^(+)/Na^(+)ratio,and root and shoot growth on 12-day-old seedlings under the salt conditions;however,there was no significant difference between the complementation and WT lines.Taken together,these results demonstrate that AtKUP12 might participate in salt tolerance in Arabidopsis through K^(+)uptake and K^(+)/Na^(+)homeostasis.展开更多
The differential expressions of three genes rbcL, salT and rab!6 in response to ABA, NaCl, PEG and heat shock were investigated in seedlings of a salt-tolerant rice mutant 20 (mutant 20) and its parental variety Oryza...The differential expressions of three genes rbcL, salT and rab!6 in response to ABA, NaCl, PEG and heat shock were investigated in seedlings of a salt-tolerant rice mutant 20 (mutant 20) and its parental variety Oryza sativa var. japonica 77-170(170). By Northern blot analysis it was found that ABA induced the expression of all three genes of rbcL, salT and rab16 in shoots and roots of both 170 and mutant 20 with the exceptions of rab16 in shoots of mutant 20 and rbcL in roots of 170. Lower concentrations of NaCl induced rbcL expression in shoots of mutant 20 but not 170. Higher concentrations of NaCl decreased rbcL expression but induced expressions of salT and rab16 in shoots of both 170 and mutant 20. PEG(15%) and 37℃ heat shock showed almost no effects on the expression of the three genes in mutant 20. However, they caused a decrease in rbcL expression and slight induction of the rab16 gene in 170, with salT expression unaffected. These results indicated that mutant 20 was relatively less responsive to applied hormonal and environmental factors as compared with 170, suggesting that mutant 20 might have acquired mechanisms by which the plant is less responsive to environmental stresses and hence gain a stronger ability to tolerate stresses.展开更多
Differential display reverse transcription-PCR (DDRT-PCR) technique was used to identify those genes that are expressed differentially between wild type rice variety 77-170 (Oryza Sativa vas Japonica) and its salt-tol...Differential display reverse transcription-PCR (DDRT-PCR) technique was used to identify those genes that are expressed differentially between wild type rice variety 77-170 (Oryza Sativa vas Japonica) and its salt-tolerant mutant (M-20) under salt stress. Totally 13 salt-inducible cDNA fragments of 200-600 bp were identified and doned, and were designated as SIGR1 - SIGR13 (salt-induced gene in rice). Northern blot analysis showed that expression of SIGR6 and SIGR8 was salt-inducible in both wild type and mutant, and expression of SIGR12 in M-20 was much higher than that in 77-170 under salt stress. It was also shown that expression of SIGR3, SIGR4, SIGR7, SIGRIO and SIGR13 was salt-inducible, and the genes were highly homologous with Rab1d which was an ABA-inducible gene of rice. The great potential application of DDRT-PCR technique in plant molecular biology research may promote the investigation of expression of salt-induced protein in rice.展开更多
Both enhanced were H^+ transport activities of tonoplast vesicles isolated from roots of the salt-tolerant mutant and wild type of wheat with treatment of NaCI, but the activity of the mutant was significantly higher ...Both enhanced were H^+ transport activities of tonoplast vesicles isolated from roots of the salt-tolerant mutant and wild type of wheat with treatment of NaCI, but the activity of the mutant was significantly higher than that of wild type. H^+ transport activity was indicated as the stable value of fluorescence quenching per mg membrane proteins. The H^+ transport activities dependent on ATP of the mutant and wild type were 1099 and 558 respectively and their activities dependent on PPi were 358 and 228 separately.展开更多
The Na^+ and K^+ permeability of K^+ channel in plasma membrane, isolated from roots of the salt-tolerant mutant of ,wheat, was lower than that of wild type in 100 mmol/L KCI and NaCI solution. The opening frequency o...The Na^+ and K^+ permeability of K^+ channel in plasma membrane, isolated from roots of the salt-tolerant mutant of ,wheat, was lower than that of wild type in 100 mmol/L KCI and NaCI solution. The opening frequency of K^+ channel of the mutant reduced more significantly than that of wild type in two kinds of solution mentioned above. It is assumed that the reduction of opening frequency mainly contributes to the Na^+ and K^+ permeability of K^+ channel of the mutant. The electric conductance of single-channel of the mutant was similar to that of wild type and the main difference between them was exhibited as the opening frequency. Their K^+/Ka^+ selectivity of K^+ channel had no significant difference. The K^+/Na^+ selectivity of the mutant and wild type was 3.35 and 3. 18 respectively.展开更多
A salt tolerant rice mutant was obtained through tissue culture. The inheritance of salt tolerance in F2 population of mutant crossed with its original variety under salt stress was studied. According to the standard,...A salt tolerant rice mutant was obtained through tissue culture. The inheritance of salt tolerance in F2 population of mutant crossed with its original variety under salt stress was studied. According to the standard, the ratio of salt tolerant: sensitive was about 3:1 suggesting that there was a major gene related to salt tolerance in the mutant. By RAPD analysis with 220 10mer primers, the gene was tagged by a 1.0 kb DNA fragment named OPS1210 which was located on chromosome 7. The genetic distance between the major salt tolerant gene was 16.4 cm.展开更多
基金supported by the National Natural Science Foundation of China(31371680)the Beijing Food Crops Innovation Consortium Program,China(BAIC092016)the earmarked fund for the China Agriculture Research System(CARS-11)
文摘The variant LM1 was previously obtained using embryogenic cell suspension cultures of sweetpotato variety Lizixiang by gamma-ray induced mutation, and then its characteristics were stably inherited through six clonal generations, thus this mutant was named LM1. In this study, systematic characterization of salt tolerance and Fusarium wilt resistance were performed between Lizixiang and mutant LM1. LM1 exhibited significantly higher salt tolerance compared to Lizixiang. The content of proline and activities of superoxide dismutase(SOD) and photosynthesis were significantly increased, while malonaldehyde(MDA) and H_2O_2 contents were significantly decreased compared to that of Lizixiang under salt stress. The inoculation test with Fusarium wilt showed that its Fusarium wilt resistance was also improved. The lignin, total phenolic, jasmonic acid(JA) contents and SOD activity were significantly higher, while H_2O_2 content was significantly lower in LM1 than that in Lizixiang. The expression level of salt stress-responsive and disease resistance-related genes was significantly higher in LM1 than that in Lizixiang under salt and Fusarium wilt stresses, respectively. This result provides a novel and valuable material for improving the salt tolerance and Fusarium wilt resistance of sweetpotato.
基金This work was supported by the National Natural Science Foundation of China[Grant No.31860061]Opening of Key Laboratory of Autonomous Region[Grant No.2017D04026]Tianshan Youth Program[Grant No.2019Q013].
文摘Potassium(K^(+))is a necessary nutrient for plant growth and crop production.The K^(+)transporter plays crucial roles in the absorption and transport of K^(+)in plants.Most K^(+)transporters in Arabidopsis have been reported,but AtKUP12,which is a member of the KT/KUP/HAK family,has not yet been the subject of relevant in-depth research.In the present study,we demonstrated that AtKUP12 plays a crucial role in K^(+)uptake in Arabidopsis under 100μM low-K^(+)and 125 mM salt stress conditions.AtKUP12 transcripts were induced by K^(+)deficiency and salt stress.We analyzed the K^(+)uptake of AtKUP12 using the K^(+)uptake-deficient yeast R5421 and Arabidopsis mutant atkup12.Transformation with AtKUP12 rescued the growth defect of mutant yeast and atkup12 mutant plants at the low-K^(+)concentration,which suggested that AtKUP12 might be involved in high-affinity K^(+)uptake in low-K^(+)environments.In comparison to the wild-type(WT)and atkup12-AtKUP12 complementation lines,atkup12 showed a dramatic reduction in potassium concentration,K^(+)/Na^(+)ratio,and root and shoot growth on 12-day-old seedlings under the salt conditions;however,there was no significant difference between the complementation and WT lines.Taken together,these results demonstrate that AtKUP12 might participate in salt tolerance in Arabidopsis through K^(+)uptake and K^(+)/Na^(+)homeostasis.
文摘The differential expressions of three genes rbcL, salT and rab!6 in response to ABA, NaCl, PEG and heat shock were investigated in seedlings of a salt-tolerant rice mutant 20 (mutant 20) and its parental variety Oryza sativa var. japonica 77-170(170). By Northern blot analysis it was found that ABA induced the expression of all three genes of rbcL, salT and rab16 in shoots and roots of both 170 and mutant 20 with the exceptions of rab16 in shoots of mutant 20 and rbcL in roots of 170. Lower concentrations of NaCl induced rbcL expression in shoots of mutant 20 but not 170. Higher concentrations of NaCl decreased rbcL expression but induced expressions of salT and rab16 in shoots of both 170 and mutant 20. PEG(15%) and 37℃ heat shock showed almost no effects on the expression of the three genes in mutant 20. However, they caused a decrease in rbcL expression and slight induction of the rab16 gene in 170, with salT expression unaffected. These results indicated that mutant 20 was relatively less responsive to applied hormonal and environmental factors as compared with 170, suggesting that mutant 20 might have acquired mechanisms by which the plant is less responsive to environmental stresses and hence gain a stronger ability to tolerate stresses.
基金Project supported by the National Natural Science Foundation of China and National High Technology Plan.
文摘Differential display reverse transcription-PCR (DDRT-PCR) technique was used to identify those genes that are expressed differentially between wild type rice variety 77-170 (Oryza Sativa vas Japonica) and its salt-tolerant mutant (M-20) under salt stress. Totally 13 salt-inducible cDNA fragments of 200-600 bp were identified and doned, and were designated as SIGR1 - SIGR13 (salt-induced gene in rice). Northern blot analysis showed that expression of SIGR6 and SIGR8 was salt-inducible in both wild type and mutant, and expression of SIGR12 in M-20 was much higher than that in 77-170 under salt stress. It was also shown that expression of SIGR3, SIGR4, SIGR7, SIGRIO and SIGR13 was salt-inducible, and the genes were highly homologous with Rab1d which was an ABA-inducible gene of rice. The great potential application of DDRT-PCR technique in plant molecular biology research may promote the investigation of expression of salt-induced protein in rice.
文摘Both enhanced were H^+ transport activities of tonoplast vesicles isolated from roots of the salt-tolerant mutant and wild type of wheat with treatment of NaCI, but the activity of the mutant was significantly higher than that of wild type. H^+ transport activity was indicated as the stable value of fluorescence quenching per mg membrane proteins. The H^+ transport activities dependent on ATP of the mutant and wild type were 1099 and 558 respectively and their activities dependent on PPi were 358 and 228 separately.
文摘The Na^+ and K^+ permeability of K^+ channel in plasma membrane, isolated from roots of the salt-tolerant mutant of ,wheat, was lower than that of wild type in 100 mmol/L KCI and NaCI solution. The opening frequency of K^+ channel of the mutant reduced more significantly than that of wild type in two kinds of solution mentioned above. It is assumed that the reduction of opening frequency mainly contributes to the Na^+ and K^+ permeability of K^+ channel of the mutant. The electric conductance of single-channel of the mutant was similar to that of wild type and the main difference between them was exhibited as the opening frequency. Their K^+/Ka^+ selectivity of K^+ channel had no significant difference. The K^+/Na^+ selectivity of the mutant and wild type was 3.35 and 3. 18 respectively.
文摘A salt tolerant rice mutant was obtained through tissue culture. The inheritance of salt tolerance in F2 population of mutant crossed with its original variety under salt stress was studied. According to the standard, the ratio of salt tolerant: sensitive was about 3:1 suggesting that there was a major gene related to salt tolerance in the mutant. By RAPD analysis with 220 10mer primers, the gene was tagged by a 1.0 kb DNA fragment named OPS1210 which was located on chromosome 7. The genetic distance between the major salt tolerant gene was 16.4 cm.