[Objective] The study aimed to obtain attenuated strain of Haemophilus parasuis.[Method] Tn5 transposon technology was used to construct a library of mutants.Positive mutants were screened by kanamycin resistance.Fals...[Objective] The study aimed to obtain attenuated strain of Haemophilus parasuis.[Method] Tn5 transposon technology was used to construct a library of mutants.Positive mutants were screened by kanamycin resistance.False positive was identified by PCR and then removed.Mice were infected to detect the virulence of mutants.The bionomics of attenuated strains were detected,too.[Result] The attenuated mutants showed similar reproductive activity to that of wild strain.The virulence of mutants was still stable after 30 passages.[Conclusion] This study provided foundation for exploring the virulence factors and pathogenic mechanism of HPS.展开更多
转座子是一类可以在基因组中不同遗传位点间移动的DNA序列,在其转移过程中有时会伴随自身拷贝数的增加。作为基因组的重要组成部分,转座子可以通过多种方式影响宿主基因及基因组的结构与功能,进而在宿主的演化过程中扮演重要角色。目前...转座子是一类可以在基因组中不同遗传位点间移动的DNA序列,在其转移过程中有时会伴随自身拷贝数的增加。作为基因组的重要组成部分,转座子可以通过多种方式影响宿主基因及基因组的结构与功能,进而在宿主的演化过程中扮演重要角色。目前依据转座过程中间体类型的不同可以将其分为I类转座子和II类转座子。Mutator超家族转座子是20世纪70年代在玉米(Zea may L.)中发现的一类特殊的转座子,其属于II类转座子,广泛存在于真核生物基因组中,包含遗传特征明晰可分的众多转座子家族。此外,该超家族转座子转座频率高,倾向于插入基因富含区及低拷贝序列区,可快速产生大量新的突变体,目前已被广泛应用于正向及反向遗传学研究。本文结合近年来相关研究结果,围绕Mutator超家族转座子的分类组成、结构特征、转座机制、插入偏好、靶位点重复序列以及玉米自主性MULEs元件展开综述,并对转座子研究面临的问题及未来研究方向进行了探讨,旨在与研究领域内的同行探讨相关研究的可能突破点、未来发展方向及可能产生的重大影响。展开更多
Mutator transposable element (Mu) has been used as an effective tool to clone maize (Zea mays L.) genes. One opaque endosperm mutant (miol6) was identified in a pool of Mu inserted mutants. A modified method, te...Mutator transposable element (Mu) has been used as an effective tool to clone maize (Zea mays L.) genes. One opaque endosperm mutant (miol6) was identified in a pool of Mu inserted mutants. A modified method, termed the double selected amplification of insertion flanking fragments (DSAIFF), was employed to isolate the Mu flanking fragments (MFFs) of miol6. The target site duplications (TSDs) isolated from the Msp I and Mse I digested MFFs had a same 9-bp sequence and were confirmed to be the flanking sequence of one identically inserted gene. Co-segregation analysis suggested that the MFFs were associated with the mutant opaque endosperm, and miol6 was mapped in silico onto the physical position ranged from 229 965 021 to 229 965 409 bp of the maize chromosome 4.09 bin. The full-length cDNA of the wild-type gene was obtained by an RT-PCR primer-scanning technique, and Mio16 was found to putatively encode a homolog of the Arabidopsis MAP3K delta-1 protein kinase. RT-PCR result the mRNA expression of miol6 region anchored by primers Mu20 and af276 was not interrupted by Mu insertion. Further researches will be done to elucidate how the expression of miol6 is alternated by Mu insertion.展开更多
Transposable elements have been utilized as mutagens to create mutant libraries for functional genomics. Isolation of genomic segments flanking the insertion Mutator (Mu) is a key step in insertion mutagenesis studi...Transposable elements have been utilized as mutagens to create mutant libraries for functional genomics. Isolation of genomic segments flanking the insertion Mutator (Mu) is a key step in insertion mutagenesis studies. Herein, we adopted a modified AFLP method to identify and isolate Mu-flanking fragments from maize. The method consists of the following steps: 1) double-digestion of genomic DNA with Bgl II/Msp I and ligation of digested fragments to the Bgl II- and Msp I-adaptors; 2) enrichment of a subset of Bgl II/Msp I fragments followed by selective amplification of the Mu-flanking fragments; 3) simultaneous display of AFLP bands derived from the flanking regions for both insert and native Mu transposons; 4) identification and isolation of AFLP bands resulting from Mu insertions by comparing the banding profiles between Mu-induced mutants and their parental lines; and 5) confirmation of flanking fragments related to these Mu insertions. Using this approach, we have isolated flanking fragment(s) resulting from Mu insertion for every Mu-induced mutant, and one such fragment, M196-FF, is found to contain a partial sequence of the DNA topoisomerase I gene Topl. Moreover, the modified AFLP method including all restriction enzymes, adaptors and primers has been optimized in this study. The modified AFLP method has been proved to be simple and efficient in the isolation of Mu-flanking fragments and will find its usefulness in the functional genomics of maize.展开更多
AIM:To investigate the suppressive activity of MUTYH variant proteins against mutations caused by oxidative lesion,8-hydroxyguanine(8OHG),in human cells.METHODS:p.R154H,p.M255V,p.L360P,and p.P377L MUTYH variants,which...AIM:To investigate the suppressive activity of MUTYH variant proteins against mutations caused by oxidative lesion,8-hydroxyguanine(8OHG),in human cells.METHODS:p.R154H,p.M255V,p.L360P,and p.P377L MUTYH variants,which were previously found in patients with colorectal polyposis and cancer,were selected for use in this study.Human H1299 cancer cell lines inducibly expressing wild-type(WT) MUTYH(type 2) or one of the 4 above-mentioned MUTYH variants were established using the piggyBac transposon vector system,enabling the genomic integration of the transposon sequence for MUTYH expression.MUTYH expression was examined after cumate induction using Western blotting analysis and immunofluorescence analysis.The intracellular localization of MUTYH variants tagged with FLAG was also immunofluorescently examined.Next,the mutation frequency in the supF of the shuttle plasmid pMY189 containing a single 8OHG residue at position 159 of the supF was compared between empty vector cells and cells expressing WT MUTYH or one of the 4 MUTYH variants using a supF forward mutation assay.RESULTS:The successful establishment of human cell lines inducibly expressing WT MUTYH or one of the 4 MUTYH variants was concluded based on the detection of MUTYH expression in these cell lines after treatment with cumate.All of the MUTYH variants and WT MUTYH were localized in the nucleus,and nuclear localization was also observed for FLAG-tagged MUTYH.The mutation frequency of supF was 2.2 × 10-2 in the 8OHG-containing pMY189 plasmid and 2.5 × 10-4 in WT pMY189 in empty vector cells,which was an 86-fold increase with the introduction of 8OHG.The mutation frequency(4.7 × 10-3) of supF in the 8OHG-containing pMY189 plasmid in cells overexpressing WT MUTYH was significantly lower than in the empty vector cells(P < 0.01).However,the mutation frequencies of the supF in the 8OHG-containing pMY189 plasmid in cells overexpressing the p.R154H,p.M255V,p.L360P,or p.P377L MUTYH variant were 1.84 × 10-2,1.55 × 10-2,1.91 × 10-2,and 1.96 × 10-2,respectively,meaning that no significant difference was observed in the mutation frequency between the empty vector cells and cells overexpressing MUTYH mutants.CONCLUSION:The suppressive activities of p.R154H,p.M255V,p.L360P,and p.P377L MUTYH variants against mutations caused by 8OHG are thought to be severely impaired in human cells.展开更多
基金Supported by National High Technology Research and Development Program of China(2006AA10A206)National Natural Science Foundation of China(31001072)the Fund of Beijing Academy of Agriculture and Forestry Sciences for Young Scholars(QNJJ201012)~~
文摘[Objective] The study aimed to obtain attenuated strain of Haemophilus parasuis.[Method] Tn5 transposon technology was used to construct a library of mutants.Positive mutants were screened by kanamycin resistance.False positive was identified by PCR and then removed.Mice were infected to detect the virulence of mutants.The bionomics of attenuated strains were detected,too.[Result] The attenuated mutants showed similar reproductive activity to that of wild strain.The virulence of mutants was still stable after 30 passages.[Conclusion] This study provided foundation for exploring the virulence factors and pathogenic mechanism of HPS.
文摘转座子是一类可以在基因组中不同遗传位点间移动的DNA序列,在其转移过程中有时会伴随自身拷贝数的增加。作为基因组的重要组成部分,转座子可以通过多种方式影响宿主基因及基因组的结构与功能,进而在宿主的演化过程中扮演重要角色。目前依据转座过程中间体类型的不同可以将其分为I类转座子和II类转座子。Mutator超家族转座子是20世纪70年代在玉米(Zea may L.)中发现的一类特殊的转座子,其属于II类转座子,广泛存在于真核生物基因组中,包含遗传特征明晰可分的众多转座子家族。此外,该超家族转座子转座频率高,倾向于插入基因富含区及低拷贝序列区,可快速产生大量新的突变体,目前已被广泛应用于正向及反向遗传学研究。本文结合近年来相关研究结果,围绕Mutator超家族转座子的分类组成、结构特征、转座机制、插入偏好、靶位点重复序列以及玉米自主性MULEs元件展开综述,并对转座子研究面临的问题及未来研究方向进行了探讨,旨在与研究领域内的同行探讨相关研究的可能突破点、未来发展方向及可能产生的重大影响。
基金supported by the High-Tech R&D Program of China(2006AA10A106)the open funds of the National Key Laboratory of Crop Genetic Improvement and China National Fundamental Fund of Personnel Training (J0730649)
文摘Mutator transposable element (Mu) has been used as an effective tool to clone maize (Zea mays L.) genes. One opaque endosperm mutant (miol6) was identified in a pool of Mu inserted mutants. A modified method, termed the double selected amplification of insertion flanking fragments (DSAIFF), was employed to isolate the Mu flanking fragments (MFFs) of miol6. The target site duplications (TSDs) isolated from the Msp I and Mse I digested MFFs had a same 9-bp sequence and were confirmed to be the flanking sequence of one identically inserted gene. Co-segregation analysis suggested that the MFFs were associated with the mutant opaque endosperm, and miol6 was mapped in silico onto the physical position ranged from 229 965 021 to 229 965 409 bp of the maize chromosome 4.09 bin. The full-length cDNA of the wild-type gene was obtained by an RT-PCR primer-scanning technique, and Mio16 was found to putatively encode a homolog of the Arabidopsis MAP3K delta-1 protein kinase. RT-PCR result the mRNA expression of miol6 region anchored by primers Mu20 and af276 was not interrupted by Mu insertion. Further researches will be done to elucidate how the expression of miol6 is alternated by Mu insertion.
基金supported by the grants of "863" High-tech Program(No.2006AA10A106)the China National Fundamental Fund of Personnel Training(No.J0730649)supported by the open funds of the National Key Laboratory of Crop Genetic Improvement
文摘Transposable elements have been utilized as mutagens to create mutant libraries for functional genomics. Isolation of genomic segments flanking the insertion Mutator (Mu) is a key step in insertion mutagenesis studies. Herein, we adopted a modified AFLP method to identify and isolate Mu-flanking fragments from maize. The method consists of the following steps: 1) double-digestion of genomic DNA with Bgl II/Msp I and ligation of digested fragments to the Bgl II- and Msp I-adaptors; 2) enrichment of a subset of Bgl II/Msp I fragments followed by selective amplification of the Mu-flanking fragments; 3) simultaneous display of AFLP bands derived from the flanking regions for both insert and native Mu transposons; 4) identification and isolation of AFLP bands resulting from Mu insertions by comparing the banding profiles between Mu-induced mutants and their parental lines; and 5) confirmation of flanking fragments related to these Mu insertions. Using this approach, we have isolated flanking fragment(s) resulting from Mu insertion for every Mu-induced mutant, and one such fragment, M196-FF, is found to contain a partial sequence of the DNA topoisomerase I gene Topl. Moreover, the modified AFLP method including all restriction enzymes, adaptors and primers has been optimized in this study. The modified AFLP method has been proved to be simple and efficient in the isolation of Mu-flanking fragments and will find its usefulness in the functional genomics of maize.
基金Supported by Grants from the Ministry of Health,Labour and Welfare(21-1)the Japan Society for the Promotion of Science (22590356 and 22790378)+3 种基金the Hamamatsu Foundation for Science and Technology Promotion,the Ministry of Education, Culture,Sports,Science and Technology(221S0001)the Takeda Science Foundationthe Aichi Cancer Research Foundationthe Smoking Research Foundation
文摘AIM:To investigate the suppressive activity of MUTYH variant proteins against mutations caused by oxidative lesion,8-hydroxyguanine(8OHG),in human cells.METHODS:p.R154H,p.M255V,p.L360P,and p.P377L MUTYH variants,which were previously found in patients with colorectal polyposis and cancer,were selected for use in this study.Human H1299 cancer cell lines inducibly expressing wild-type(WT) MUTYH(type 2) or one of the 4 above-mentioned MUTYH variants were established using the piggyBac transposon vector system,enabling the genomic integration of the transposon sequence for MUTYH expression.MUTYH expression was examined after cumate induction using Western blotting analysis and immunofluorescence analysis.The intracellular localization of MUTYH variants tagged with FLAG was also immunofluorescently examined.Next,the mutation frequency in the supF of the shuttle plasmid pMY189 containing a single 8OHG residue at position 159 of the supF was compared between empty vector cells and cells expressing WT MUTYH or one of the 4 MUTYH variants using a supF forward mutation assay.RESULTS:The successful establishment of human cell lines inducibly expressing WT MUTYH or one of the 4 MUTYH variants was concluded based on the detection of MUTYH expression in these cell lines after treatment with cumate.All of the MUTYH variants and WT MUTYH were localized in the nucleus,and nuclear localization was also observed for FLAG-tagged MUTYH.The mutation frequency of supF was 2.2 × 10-2 in the 8OHG-containing pMY189 plasmid and 2.5 × 10-4 in WT pMY189 in empty vector cells,which was an 86-fold increase with the introduction of 8OHG.The mutation frequency(4.7 × 10-3) of supF in the 8OHG-containing pMY189 plasmid in cells overexpressing WT MUTYH was significantly lower than in the empty vector cells(P < 0.01).However,the mutation frequencies of the supF in the 8OHG-containing pMY189 plasmid in cells overexpressing the p.R154H,p.M255V,p.L360P,or p.P377L MUTYH variant were 1.84 × 10-2,1.55 × 10-2,1.91 × 10-2,and 1.96 × 10-2,respectively,meaning that no significant difference was observed in the mutation frequency between the empty vector cells and cells overexpressing MUTYH mutants.CONCLUSION:The suppressive activities of p.R154H,p.M255V,p.L360P,and p.P377L MUTYH variants against mutations caused by 8OHG are thought to be severely impaired in human cells.