High energy consumption has seriously hindered the development of Fenton-like reactions for the removal of refractory organic pollutants in water.To solve this problem,we designed a novel Fenton-like catalyst(Cu-PAN3)...High energy consumption has seriously hindered the development of Fenton-like reactions for the removal of refractory organic pollutants in water.To solve this problem,we designed a novel Fenton-like catalyst(Cu-PAN3)by coprecipitation and carbon thermal reduction.The catalyst exhibits excellent Fenton-like catalytic activity and stability for the degradation of various pollutants with low H_(2)O_(2)consumption.The experimental results indicate that the dual reaction centers(DRCs)are composed of Cu-N-C and Cu-O-C bridges between copper and graphene-like carbon,which form electron-poor/rich centers on the catalyst surface.H_(2)O_(2)is mainly reduced at electron-rich Cu centers to free radicals for pollutant degradation.Meanwhile,pollutants can be oxidized by donating electrons to the electron-poor C centers of the catalyst,which inhibits the ineffective decomposition of H_(2)O_(2)at the electron-poor centers.This therefore significantly reduces the consumption of H_(2)O_(2)and reduces energy consumption.展开更多
MicroRNA-208a(miR-208a)plays critical roles in the severe fibrosis and heart failure post myocardial ischemia/reperfusion(IR)injury.MiR-208a inhibitor(mI)with complementary RNA sequence can silence the expression of m...MicroRNA-208a(miR-208a)plays critical roles in the severe fibrosis and heart failure post myocardial ischemia/reperfusion(IR)injury.MiR-208a inhibitor(mI)with complementary RNA sequence can silence the expression of miR-208a,while it is challenging to achieve efficient and myocardium-targeted delivery.Herein,biomimetic nanocomplexes(NCs)reversibly coated with red blood cell membrane(RM)were developed for the myocardial delivery of mI.To construct the NCs,membrane-penetrating helical polypeptide(PG)was first adopted to condense mI and form the cationic inner core,which subsequently adsorbed catalase(CAT)via electrostatic interaction followed by surface coating with RM.The membrane-coated NCs enabled prolonged blood circulation after systemic administration,and could accumulate in the injured myocardium via passive targeting.In the oxidative microenvironment of injured myocardium,CAT decomposed H_(2)O_(2)to produce O_(2)bubbles,which drove the shedding of the outer RM to expose the positively charged inner core,thus facilitated effective internalization by cardiac cells.Based on the combined contribution of mI-mediated miR-208a silencing and CAT-mediated alleviation of oxidative stress,NCs effectively ameliorated the myocardial microenvironment,hence reducing the infarct size as well as fibrosis and promoting recovery of cardiac functions.This study provides an effective strategy for the cytosolic delivery of nucleic acid cargoes in the myocardium,and it renders an enlightened approach to resolve the blood circulation/cell internalization dilemma of cell membrane-coated delivery systems.展开更多
α-Tocopherol in tomato pomace fed to broilers could retard lipid oxidation in processed,heated and/or stored meat.However,in order for tomato pomace to be a value-added feed ingredient for poultry,this agricultural b...α-Tocopherol in tomato pomace fed to broilers could retard lipid oxidation in processed,heated and/or stored meat.However,in order for tomato pomace to be a value-added feed ingredient for poultry,this agricultural byproduct must contain reduced cellulose,hemicelluloseandlignin,possiblyachievedbyamendmentwithMn(487μM/gsubstrate)andtreatmentwith Pleurotus ostreatus under solid-state fermentation.Research was conducted to assess the O_(2)consumption rate and the CO_(2)evolution rate in tomato pomace treated with Pleurotus ostreatus without and with Mn to determine if peak colonization rate(for heightened delignification)was delayed by amendment.Results revealed that(1)one mole of O_(2)was consumed for each mole of CO_(2)evolved,(2)the peak CO_(2)evolution rate for all treatments occurred between 300 to 350 h(12.5 to 14.6 d)and(3)the peak CO_(2)evolution rate and the cumulative evolution rate were not delayed by Mn addition.Thus,when Mn was amended to tomato pomace,the metabolic activity of P.ostreatus was reduced,thereby overriding potential improvements in pomace delignification and in-vitro digestibility.An atmosphere with>20%O_(2)and lower levels of Mn are needed to enhance delignification of tomato pomace for use in poultry feed.展开更多
There is a great demand for high-performance hydrogen sulfide(H_(2)S)sensors with low operating temperatures.Ag/In_(2)O_(3)hexagonal tubes with different proportions were prepared by the calcination of Ag+-impregnated...There is a great demand for high-performance hydrogen sulfide(H_(2)S)sensors with low operating temperatures.Ag/In_(2)O_(3)hexagonal tubes with different proportions were prepared by the calcination of Ag+-impregnated indium-organic frameworks(CPP-3(In)),and the developed sensors exhibit enhanced gas-sensing performance toward H_(2)S.Gas sensing measurements indicate that the response of Ag/In_(2)O_(3)(2.5 wt%)sensor to 5 ppm H_(2)S has the highest response(119),operated at 70℃.The Ag/In_(2)O_(3)(2.5 wt%)based sensor exhibits short response time(20 s),low detection limit(300 ppb),and good selectivity toward H_(2)S gas,which imply that the CPP-3(In)-derived Ag/In_(2)O_(3)hexagonal tube is a promising candidate to be constructed a low power-consumption H_(2)S sensor.展开更多
基金supported by the National Natural Science Foundation of China(Nos.52150056,51838005,and 52100032)the Introduced Innovative R&D Team Project under the“Pearl River Talent Recruitment Program”of Guangdong Province(No.2019ZT08L387)+1 种基金the Special Basic Research Fund for Central Public Research Institutes of China(No.PMzx703-202204-152)the support from the BL14W1 beamline of Shanghai Synchrotron Radiation Facility(SSRF,China)。
文摘High energy consumption has seriously hindered the development of Fenton-like reactions for the removal of refractory organic pollutants in water.To solve this problem,we designed a novel Fenton-like catalyst(Cu-PAN3)by coprecipitation and carbon thermal reduction.The catalyst exhibits excellent Fenton-like catalytic activity and stability for the degradation of various pollutants with low H_(2)O_(2)consumption.The experimental results indicate that the dual reaction centers(DRCs)are composed of Cu-N-C and Cu-O-C bridges between copper and graphene-like carbon,which form electron-poor/rich centers on the catalyst surface.H_(2)O_(2)is mainly reduced at electron-rich Cu centers to free radicals for pollutant degradation.Meanwhile,pollutants can be oxidized by donating electrons to the electron-poor C centers of the catalyst,which inhibits the ineffective decomposition of H_(2)O_(2)at the electron-poor centers.This therefore significantly reduces the consumption of H_(2)O_(2)and reduces energy consumption.
基金supported by the National Natural Science Foundation of China(Nos.82172076,52273144,and 52033006)111 project,Collaborative Innovation Center of Suzhou Nano Science&Technology,Joint International Research Laboratory of Carbon-Based Functional Materials and Devices,and Suzhou Key Laboratory of Nanotechnology and Biomedicine.
文摘MicroRNA-208a(miR-208a)plays critical roles in the severe fibrosis and heart failure post myocardial ischemia/reperfusion(IR)injury.MiR-208a inhibitor(mI)with complementary RNA sequence can silence the expression of miR-208a,while it is challenging to achieve efficient and myocardium-targeted delivery.Herein,biomimetic nanocomplexes(NCs)reversibly coated with red blood cell membrane(RM)were developed for the myocardial delivery of mI.To construct the NCs,membrane-penetrating helical polypeptide(PG)was first adopted to condense mI and form the cationic inner core,which subsequently adsorbed catalase(CAT)via electrostatic interaction followed by surface coating with RM.The membrane-coated NCs enabled prolonged blood circulation after systemic administration,and could accumulate in the injured myocardium via passive targeting.In the oxidative microenvironment of injured myocardium,CAT decomposed H_(2)O_(2)to produce O_(2)bubbles,which drove the shedding of the outer RM to expose the positively charged inner core,thus facilitated effective internalization by cardiac cells.Based on the combined contribution of mI-mediated miR-208a silencing and CAT-mediated alleviation of oxidative stress,NCs effectively ameliorated the myocardial microenvironment,hence reducing the infarct size as well as fibrosis and promoting recovery of cardiac functions.This study provides an effective strategy for the cytosolic delivery of nucleic acid cargoes in the myocardium,and it renders an enlightened approach to resolve the blood circulation/cell internalization dilemma of cell membrane-coated delivery systems.
文摘α-Tocopherol in tomato pomace fed to broilers could retard lipid oxidation in processed,heated and/or stored meat.However,in order for tomato pomace to be a value-added feed ingredient for poultry,this agricultural byproduct must contain reduced cellulose,hemicelluloseandlignin,possiblyachievedbyamendmentwithMn(487μM/gsubstrate)andtreatmentwith Pleurotus ostreatus under solid-state fermentation.Research was conducted to assess the O_(2)consumption rate and the CO_(2)evolution rate in tomato pomace treated with Pleurotus ostreatus without and with Mn to determine if peak colonization rate(for heightened delignification)was delayed by amendment.Results revealed that(1)one mole of O_(2)was consumed for each mole of CO_(2)evolved,(2)the peak CO_(2)evolution rate for all treatments occurred between 300 to 350 h(12.5 to 14.6 d)and(3)the peak CO_(2)evolution rate and the cumulative evolution rate were not delayed by Mn addition.Thus,when Mn was amended to tomato pomace,the metabolic activity of P.ostreatus was reduced,thereby overriding potential improvements in pomace delignification and in-vitro digestibility.An atmosphere with>20%O_(2)and lower levels of Mn are needed to enhance delignification of tomato pomace for use in poultry feed.
基金supported by the National Natural Science Foundation of China(No.61471233)Shanghai Sailing Program(No.21YF1431400)。
文摘There is a great demand for high-performance hydrogen sulfide(H_(2)S)sensors with low operating temperatures.Ag/In_(2)O_(3)hexagonal tubes with different proportions were prepared by the calcination of Ag+-impregnated indium-organic frameworks(CPP-3(In)),and the developed sensors exhibit enhanced gas-sensing performance toward H_(2)S.Gas sensing measurements indicate that the response of Ag/In_(2)O_(3)(2.5 wt%)sensor to 5 ppm H_(2)S has the highest response(119),operated at 70℃.The Ag/In_(2)O_(3)(2.5 wt%)based sensor exhibits short response time(20 s),low detection limit(300 ppb),and good selectivity toward H_(2)S gas,which imply that the CPP-3(In)-derived Ag/In_(2)O_(3)hexagonal tube is a promising candidate to be constructed a low power-consumption H_(2)S sensor.