N,N-dimethyl-3-oxa-glutaramic acid was purified and characterized by 1H-NMR, Fourier transform in-frared spectroscopy (FT-IR) and elemental analysis. The thermal decomposition of the title compound was studied by mean...N,N-dimethyl-3-oxa-glutaramic acid was purified and characterized by 1H-NMR, Fourier transform in-frared spectroscopy (FT-IR) and elemental analysis. The thermal decomposition of the title compound was studied by means of thermogravimetry differential thermogravimetry (TG-DTG) and FT-IR. The ki-netic parameters of its second-stage decomposition reaction were calculated and the decomposition mechanism was discussed. The kinetic model function in a differential form, apparent activation energy and pre-exponential constant of the reaction are 3/2 [(1-α) 1/3-1]-1, 203.75 kJ-mol-1 and 1017.95s-1, respec-tively. The values of ΔS≠, ΔH≠ andΔG≠ of the reaction are 94.28 J-mol-1-K-1, 203.75 kJ-mol-1 and 155.75 kJ-mol-1, respectively.展开更多
基金the National Natural Science Foundation of China (Grant No. 20106009)
文摘N,N-dimethyl-3-oxa-glutaramic acid was purified and characterized by 1H-NMR, Fourier transform in-frared spectroscopy (FT-IR) and elemental analysis. The thermal decomposition of the title compound was studied by means of thermogravimetry differential thermogravimetry (TG-DTG) and FT-IR. The ki-netic parameters of its second-stage decomposition reaction were calculated and the decomposition mechanism was discussed. The kinetic model function in a differential form, apparent activation energy and pre-exponential constant of the reaction are 3/2 [(1-α) 1/3-1]-1, 203.75 kJ-mol-1 and 1017.95s-1, respec-tively. The values of ΔS≠, ΔH≠ andΔG≠ of the reaction are 94.28 J-mol-1-K-1, 203.75 kJ-mol-1 and 155.75 kJ-mol-1, respectively.