[Objective] The study aimed to extract fulvic acid from brown coal using N-Mn-TiO2 as a catalyst and H2O2 or HNO3 as an oxidizer. [Method] The effects of catalyst N-Mn-TiO2 on the yield and structure of fuMc acid were...[Objective] The study aimed to extract fulvic acid from brown coal using N-Mn-TiO2 as a catalyst and H2O2 or HNO3 as an oxidizer. [Method] The effects of catalyst N-Mn-TiO2 on the yield and structure of fuMc acid were studied, and the content of functional groups in fulvic acid was analyzed qualitatively and quantitatively. [ Reselt] Two catalysts could improved the yield of fulvic acid, that is, catalyst 1 (N: Mn: 13 = 16: 0.001:1, roasting temperature was 400 ℃) and catalyst 2 (N: Mn: Ti = 16: 0.001:1, roasting temperature was 100 ℃) increased OFA yield by 10.69% and 32.17% and NFA by 8.61% and 7.49% respectively. After the addition of catalysts, the content of total acid radicals in OFA changed little, and carboxyi content increased slightly, but phenolic hydroxyl content decreased. When HNO3 was used as an oxidizer, the content of total acid radicals and phenolic hydroxyl in NFA decreased. In addition, the structure of OFA was different from that of NFA. [Condusion] The research could provide scientific references for the development and application of brown coal in future.展开更多
The performance of BaC12-TiO2-SnO2 composite catalysts in oxidative coupling of methane reaction has been investigated. A series of BaC12-TiO2, BaC1E-SnO2, TiO2-SnO2, and BaC12-TiO2-SnO2 catalysts were prepared, and c...The performance of BaC12-TiO2-SnO2 composite catalysts in oxidative coupling of methane reaction has been investigated. A series of BaC12-TiO2, BaC1E-SnO2, TiO2-SnO2, and BaC12-TiO2-SnO2 catalysts were prepared, and characterized by BET, XRD, XPS, CO2-TPD and H2-TPR, respectively. The synergistic effect among BaC12, SnO2 and TiO2 compositions enhances the catalytic performance. The best C2 selectivity and ethylene yield are obtained on the catalyst with the equal molar amount of the three compositions (BaC12 : TiO2 : SnO2 molar ratio of 1 : 1 : 1). The optimal reaction conditions are as follows: 800 ℃, 44 mL.min-1 for methane, 22 mL.min-1 for oxygen and a space velocity of 5000 mL-h-1 .g-1, and the C2H4 yield over the catalyst is 20.1% with the CH4 conversion of 43.8% and C2 selectivity of 53.3%.展开更多
A one-step microwave irradiation method was used to deposit carbon and nitrogen co-doped TiO2((C, N)-TiO2) on commercial brick((C, N)-TiO2/brick). The as-prepared samples were characterized by X-ray diffractio...A one-step microwave irradiation method was used to deposit carbon and nitrogen co-doped TiO2((C, N)-TiO2) on commercial brick((C, N)-TiO2/brick). The as-prepared samples were characterized by X-ray diffraction, ultraviolet–visible(UV–vis) diffuse reflectance spectroscopy, photoluminescence spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy(SEM). A selective technique was also used to investigate the concentration of hydroxyl radicals during UV–vis irradiation of the Methyl Orange solution with the as-prepared samples. The C and N dopants enhanced visible light absorption and provided a longer lifetime for the photo-generated electron–hole pairs. The SEM images showed that the as-prepared sample is porous. The dark adsorption and photodegradation test for(C, N)-TiO2/brick showed good photodegradation and good recyclability. The best photodegradation rate was 94% after 2 hr. The maximum degradation rate was maintained even after the 6th cycle. The good photocatalytic properties are attributed to the enhanced visible light absorption, enhanced pollutant adsorption arising from the porous structure of the(C, N)-TiO2 thin film, and longer lifetime of the photo-generated electron–hole pairs.(C, N)-TiO2/brick should have potential commercial applications in photodegradation processes because of its low cost, good photodegradation, and excellent recyclability.展开更多
基金Supported by the Bidding Project of Qujing Normal University(2011ZB005)
文摘[Objective] The study aimed to extract fulvic acid from brown coal using N-Mn-TiO2 as a catalyst and H2O2 or HNO3 as an oxidizer. [Method] The effects of catalyst N-Mn-TiO2 on the yield and structure of fuMc acid were studied, and the content of functional groups in fulvic acid was analyzed qualitatively and quantitatively. [ Reselt] Two catalysts could improved the yield of fulvic acid, that is, catalyst 1 (N: Mn: 13 = 16: 0.001:1, roasting temperature was 400 ℃) and catalyst 2 (N: Mn: Ti = 16: 0.001:1, roasting temperature was 100 ℃) increased OFA yield by 10.69% and 32.17% and NFA by 8.61% and 7.49% respectively. After the addition of catalysts, the content of total acid radicals in OFA changed little, and carboxyi content increased slightly, but phenolic hydroxyl content decreased. When HNO3 was used as an oxidizer, the content of total acid radicals and phenolic hydroxyl in NFA decreased. In addition, the structure of OFA was different from that of NFA. [Condusion] The research could provide scientific references for the development and application of brown coal in future.
文摘The performance of BaC12-TiO2-SnO2 composite catalysts in oxidative coupling of methane reaction has been investigated. A series of BaC12-TiO2, BaC1E-SnO2, TiO2-SnO2, and BaC12-TiO2-SnO2 catalysts were prepared, and characterized by BET, XRD, XPS, CO2-TPD and H2-TPR, respectively. The synergistic effect among BaC12, SnO2 and TiO2 compositions enhances the catalytic performance. The best C2 selectivity and ethylene yield are obtained on the catalyst with the equal molar amount of the three compositions (BaC12 : TiO2 : SnO2 molar ratio of 1 : 1 : 1). The optimal reaction conditions are as follows: 800 ℃, 44 mL.min-1 for methane, 22 mL.min-1 for oxygen and a space velocity of 5000 mL-h-1 .g-1, and the C2H4 yield over the catalyst is 20.1% with the CH4 conversion of 43.8% and C2 selectivity of 53.3%.
基金supported by the National Natural Science Foundation of China (Nos. 51672090 and 51372092)
文摘A one-step microwave irradiation method was used to deposit carbon and nitrogen co-doped TiO2((C, N)-TiO2) on commercial brick((C, N)-TiO2/brick). The as-prepared samples were characterized by X-ray diffraction, ultraviolet–visible(UV–vis) diffuse reflectance spectroscopy, photoluminescence spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy(SEM). A selective technique was also used to investigate the concentration of hydroxyl radicals during UV–vis irradiation of the Methyl Orange solution with the as-prepared samples. The C and N dopants enhanced visible light absorption and provided a longer lifetime for the photo-generated electron–hole pairs. The SEM images showed that the as-prepared sample is porous. The dark adsorption and photodegradation test for(C, N)-TiO2/brick showed good photodegradation and good recyclability. The best photodegradation rate was 94% after 2 hr. The maximum degradation rate was maintained even after the 6th cycle. The good photocatalytic properties are attributed to the enhanced visible light absorption, enhanced pollutant adsorption arising from the porous structure of the(C, N)-TiO2 thin film, and longer lifetime of the photo-generated electron–hole pairs.(C, N)-TiO2/brick should have potential commercial applications in photodegradation processes because of its low cost, good photodegradation, and excellent recyclability.