Knowledge about crop growth processes in relation to N limitation is necessary to optimize N management in farming system. Plant-based diagnostic method, for instance nitrogen nutrition index (NNI) were used to dete...Knowledge about crop growth processes in relation to N limitation is necessary to optimize N management in farming system. Plant-based diagnostic method, for instance nitrogen nutrition index (NNI) were used to determine the crop nitrogen status. This study determines the relationship of NNI with agronomic nitrogen use efficiency (AEN), tuber yield, radiation use efficiency (RUE) and leaf parameters including leaf area index (LAI), areal leaf N content (NJ and leaf N concentration (N0. Potatoes were grown in field at three N levels: no N (N 1), 150 kg N ha^-1 (N2), 300 kg N ha^-1 (N3). N deficiency was quantified by NNI and RUE was generally calculated by estimating of the light absorbance on leaf area. NNI was used to evaluate the N effect on tuber yield, RUE, LAI, NAL, and NL. The results showed that NNI was negatively correlated with AEN, N deficiencies (NNI〈 1) which occurred for N 1 and N2 significantly reduced LAI, NL and tuber yield; whereas the N deficiencies had a relative small effect on NAL and RUE. To remove any effect other than N on these parameters, the actual ratio to maximum values were calculated for each developmental linear relationships were obtained between NNI and tuber RUE to NNI. stage of potatoes. When the NNI ranged from 0.4 to 1, positive yield, LAI, NL, while a nonlinear regression fitted the response of展开更多
Relative tillering rate(RTR)increased linear-ly with the increasing of leaf N concentration(NLV)has been already reported.To testwhether this relationship could be used toquantitatively explain the difference in tille...Relative tillering rate(RTR)increased linear-ly with the increasing of leaf N concentration(NLV)has been already reported.To testwhether this relationship could be used toquantitatively explain the difference in tilleringamong a wide range of N application,field ex- periments were conducted at the IRRI farm,Los Banos,Laguna,the Philippines.Two in- dica cultivars,IR 72 and IR68284H wereused.For each cultivar,12 treatments includ- ing 4 N levels(0,60,120,and 180kgN·ha)and 3 transplanting spacing(30×20,20×20,and 10×20cm)were arranged in a ran-domized split-plot design with 4 replications.The N treatments were designated as mainplots and spacings as subplots.Fourteen-day-old seedlings were transplanted with 3seedlings per hill.The subplot area was 20m~2.Nitrogen fertilizer was applied as basal,atmidtillering,and at panicle initiation in threeequal splits.P,K,and Zn were applied asbasal at normal dosage.The field was flooded.Plant samples were taken every 7-14 d from 14d after transplanting to flower展开更多
基金supported by the National Key Technology R&D Program (2011BAD12B03)
文摘Knowledge about crop growth processes in relation to N limitation is necessary to optimize N management in farming system. Plant-based diagnostic method, for instance nitrogen nutrition index (NNI) were used to determine the crop nitrogen status. This study determines the relationship of NNI with agronomic nitrogen use efficiency (AEN), tuber yield, radiation use efficiency (RUE) and leaf parameters including leaf area index (LAI), areal leaf N content (NJ and leaf N concentration (N0. Potatoes were grown in field at three N levels: no N (N 1), 150 kg N ha^-1 (N2), 300 kg N ha^-1 (N3). N deficiency was quantified by NNI and RUE was generally calculated by estimating of the light absorbance on leaf area. NNI was used to evaluate the N effect on tuber yield, RUE, LAI, NAL, and NL. The results showed that NNI was negatively correlated with AEN, N deficiencies (NNI〈 1) which occurred for N 1 and N2 significantly reduced LAI, NL and tuber yield; whereas the N deficiencies had a relative small effect on NAL and RUE. To remove any effect other than N on these parameters, the actual ratio to maximum values were calculated for each developmental linear relationships were obtained between NNI and tuber RUE to NNI. stage of potatoes. When the NNI ranged from 0.4 to 1, positive yield, LAI, NL, while a nonlinear regression fitted the response of
文摘目的分析体质量指数(Body mass index,BMI)与老年慢性心力衰竭(Chronic heart failure,CHF)患者血浆胱抑素C(cystatinC,Cys-C)、N末端B型利钠肽原(N-terminal pro-B-type natriuretic peptide,NT-proBNP)水平相关性,并分析血浆Cys-C、NT-proBNP评估老年CHF患者预后价值。方法选择2021年7月—2022年10月在本院接受治疗的192例老年慢性心力衰竭(CHF)患者作为研究对象,按照BMI指数分为肥胖组(49例)、超重组(68例)和正常组(75例)三组。对比各亚组患者血浆Cys-C、NT-proBNP水平差异,采用Pearson相关性分析的方式探究老年CHF患者BMI指数与血浆Cys-C、NT-proBNP相关性,对入组患者实施12个月随访,将患者按照预后情况区分为死亡组和存活组,对比两亚组患者血浆Cys-C、NT-proBNP水平差异并评估预后评估价值。结果肥胖组患者血浆Cys-C、NT-proBNP水平高于超重组,超重组患者血浆Cys-C、NT-proBNP水平高于正常组,差异具有统计学意义(P<0.05);入组老年CHF患者的BMI指数与其血浆Cys-C、NT-proBN水平均呈现明显的正相关性(r=0.7104,P<0.0001)(r=0.6603,P<0.0001);随访12个月显示,死亡组患者的血浆Cys-C、NT-proBNP水平显著高于存活组患者,差异具有统计学意义(P<0.05);血浆Cys-C、NT-proBNP对老年CHF预后评估曲线下面积(area under curv,AUC)为0.6930(P=0.0009)、0.7982(P<0.0001)。结论老年CHF患者随BMI指数升高,血浆Cys-C、NT-proBNP水平逐渐升高,血浆Cys-C、NT-proBNP对老年CHF临床结局具有一定的预测价值,进一步研究有推广应用于老年CHF预后评估潜力。
文摘Relative tillering rate(RTR)increased linear-ly with the increasing of leaf N concentration(NLV)has been already reported.To testwhether this relationship could be used toquantitatively explain the difference in tilleringamong a wide range of N application,field ex- periments were conducted at the IRRI farm,Los Banos,Laguna,the Philippines.Two in- dica cultivars,IR 72 and IR68284H wereused.For each cultivar,12 treatments includ- ing 4 N levels(0,60,120,and 180kgN·ha)and 3 transplanting spacing(30×20,20×20,and 10×20cm)were arranged in a ran-domized split-plot design with 4 replications.The N treatments were designated as mainplots and spacings as subplots.Fourteen-day-old seedlings were transplanted with 3seedlings per hill.The subplot area was 20m~2.Nitrogen fertilizer was applied as basal,atmidtillering,and at panicle initiation in threeequal splits.P,K,and Zn were applied asbasal at normal dosage.The field was flooded.Plant samples were taken every 7-14 d from 14d after transplanting to flower