A kind of novel copolymer hydrogel of poly(N, N-dimethylaminoethyl methacrylate-co-N-isopropylacrylamide) (poly[DMAEMA/NIPAAm]) was synthesized by the initiation of K2S2O8, N, N'-methylene-bis(acrylamide) (Bis...A kind of novel copolymer hydrogel of poly(N, N-dimethylaminoethyl methacrylate-co-N-isopropylacrylamide) (poly[DMAEMA/NIPAAm]) was synthesized by the initiation of K2S2O8, N, N'-methylene-bis(acrylamide) (Bis) was used as the crosslinker. The effects of monomer content, pH and temperature on swelling ratio of the hydrogel were investigated; the thermo-sensitivity in deionized water and in physiological saline was determined. It showed that the swelling ratio of the hydrogel could be changed by changing the temperature or pH alternately. Both swelling ratio and LCST (Lower Critical Solution Temperature) of the hydrogel decreased with the increase of NIPAAm in the co-polymer content.展开更多
Poly(N,N-dimethylaminoethyl methacrylate) (polyDMAEMA) hydrogels prepared by gamma-irradiation showed obvious temperature-sensitivity in a temperature range of 38-40degreesC and pH-sensitivity at pH=2.5. They also sho...Poly(N,N-dimethylaminoethyl methacrylate) (polyDMAEMA) hydrogels prepared by gamma-irradiation showed obvious temperature-sensitivity in a temperature range of 38-40degreesC and pH-sensitivity at pH=2.5. They also showed electric response behavior although it was not typical. The hydrogels were used in controlled release at different pH, temperature, and electric voltage. The release rates of methylene blue (MB) from the gels at 52degreesC and pH=1.24 were faster than those at 20degreesC and pH=10.56, respectively. In addition, the release rate at a field voltage of 5.0 was also faster than that without electric field.展开更多
In this work, copolymerization of two functional monomers, glycidyl methacrylate (GMA) and N,N-dimethylaminoethyl methacrylate (DMAEMA), was firstly carried out via reversible addition-fragmentation chain transfer...In this work, copolymerization of two functional monomers, glycidyl methacrylate (GMA) and N,N-dimethylaminoethyl methacrylate (DMAEMA), was firstly carried out via reversible addition-fragmentation chain transfer (RAFT) polymerization successfully. The copolymerization kinetics was investigated under the molar ratio of n[GMA+DMAEMA]o/n[AIBN]o/n[CPDN]o=300/1/3 at 60℃. The copolymerization showed typical "living" features such as first-order polymerization kinetics, linear increase of molecular weight with monomer conversion and narrow molecular weight distribution. The reactivity ratios of GMA and DMAEMA were calculated by the extended Kelen-Tudos linearization methods. The epoxy group of the copolymer PGMA-co-PDMAEMA remained intact under the conditions of RAFT copolymerization and could easily be post-modified by ethylenedia- mine. Moreover, the modified copolymer could be used as a gene carrier.展开更多
To functionalize poly(vinyl chloride)(PVC) for various applications, monomers containing tertiary amine group are incorporated into PVC via atom transfer radical polymerization(ATRP) initiated by the labile chlo...To functionalize poly(vinyl chloride)(PVC) for various applications, monomers containing tertiary amine group are incorporated into PVC via atom transfer radical polymerization(ATRP) initiated by the labile chlorines in their backbones. The kinetics of synthesis was carefully investigated, and it is proven that the grafting polymerization process can be effectively controlled by regulating the reaction time. The membranes are fabricated using PVC and copolymers by non-solvent induced phase separation(NIPS) process. The hydrophilicity and pore structure of copolymer membranes were enhanced as well, these membranes are endowed with positive charge. When PDMA%(i.e., the PDMA weight percentage in copolymer) is 31.1%, the flux and Victoria blue B rejection are 26.0 L·m·^-2·h^-1(0.5 MPa) and 91.2%, respectively. Thus, the newly synthesized polymer is proven to be a promising material for dye separation with positive charges.展开更多
文摘A kind of novel copolymer hydrogel of poly(N, N-dimethylaminoethyl methacrylate-co-N-isopropylacrylamide) (poly[DMAEMA/NIPAAm]) was synthesized by the initiation of K2S2O8, N, N'-methylene-bis(acrylamide) (Bis) was used as the crosslinker. The effects of monomer content, pH and temperature on swelling ratio of the hydrogel were investigated; the thermo-sensitivity in deionized water and in physiological saline was determined. It showed that the swelling ratio of the hydrogel could be changed by changing the temperature or pH alternately. Both swelling ratio and LCST (Lower Critical Solution Temperature) of the hydrogel decreased with the increase of NIPAAm in the co-polymer content.
基金This work was financially supported by the National Natural Science Foundation of China (No. 39870227) this paper was reported on International Symposium on Radiation Technology in Emerging Industry Application, held on Nov. 6-10, 2001 in Beijing, China
文摘Poly(N,N-dimethylaminoethyl methacrylate) (polyDMAEMA) hydrogels prepared by gamma-irradiation showed obvious temperature-sensitivity in a temperature range of 38-40degreesC and pH-sensitivity at pH=2.5. They also showed electric response behavior although it was not typical. The hydrogels were used in controlled release at different pH, temperature, and electric voltage. The release rates of methylene blue (MB) from the gels at 52degreesC and pH=1.24 were faster than those at 20degreesC and pH=10.56, respectively. In addition, the release rate at a field voltage of 5.0 was also faster than that without electric field.
文摘In this work, copolymerization of two functional monomers, glycidyl methacrylate (GMA) and N,N-dimethylaminoethyl methacrylate (DMAEMA), was firstly carried out via reversible addition-fragmentation chain transfer (RAFT) polymerization successfully. The copolymerization kinetics was investigated under the molar ratio of n[GMA+DMAEMA]o/n[AIBN]o/n[CPDN]o=300/1/3 at 60℃. The copolymerization showed typical "living" features such as first-order polymerization kinetics, linear increase of molecular weight with monomer conversion and narrow molecular weight distribution. The reactivity ratios of GMA and DMAEMA were calculated by the extended Kelen-Tudos linearization methods. The epoxy group of the copolymer PGMA-co-PDMAEMA remained intact under the conditions of RAFT copolymerization and could easily be post-modified by ethylenedia- mine. Moreover, the modified copolymer could be used as a gene carrier.
基金financially supported by the National 863 Program(No.2012AA03A602)National 973 Program(No.2009CB623402)the National Natural Science Foundation of China(No.U1134002)
文摘To functionalize poly(vinyl chloride)(PVC) for various applications, monomers containing tertiary amine group are incorporated into PVC via atom transfer radical polymerization(ATRP) initiated by the labile chlorines in their backbones. The kinetics of synthesis was carefully investigated, and it is proven that the grafting polymerization process can be effectively controlled by regulating the reaction time. The membranes are fabricated using PVC and copolymers by non-solvent induced phase separation(NIPS) process. The hydrophilicity and pore structure of copolymer membranes were enhanced as well, these membranes are endowed with positive charge. When PDMA%(i.e., the PDMA weight percentage in copolymer) is 31.1%, the flux and Victoria blue B rejection are 26.0 L·m·^-2·h^-1(0.5 MPa) and 91.2%, respectively. Thus, the newly synthesized polymer is proven to be a promising material for dye separation with positive charges.