We theoretically investigate the excited state intramolecular proton transfer(ESIPT) behavior of the novel fluorophore bis-imine derivative molecule HNP which was designed based on the intersection of 1-(hydrazonometh...We theoretically investigate the excited state intramolecular proton transfer(ESIPT) behavior of the novel fluorophore bis-imine derivative molecule HNP which was designed based on the intersection of 1-(hydrazonomethyl)-naphthalene-2-ol and 1-pyrenecarboxaldehyde. Especially, the density functional theory(DFT) and time-dependent density functional theory(TDDFT) methods for HNP monomer are introduced. Moreover, the "our own n-layered integrated molecular orbital and molecular mechanics"(ONIOM) method(TDDFT:universal force field(UFF)) is used to reveal the aggregation-induced emission(AIE) effect on the ESIPT process for HNP in crystal. Our results confirm that the ESIPT process happens upon the photoexcitation for the HNP monomer and HNP in crystal, which is distinctly monitored by the optimized geometric structures and the potential energy curves. In addition, the results of potential energy curves reveal that the ESIPT process in HNP will be promoted by the AIE effect. Furthermore, the highest occupied molecular orbital(HOMO) and lowest unoccupied molecular orbital(LUMO) for the HNP monomer and HNP in crystal have been calculated. The calculation demonstrates that the electron density decrease of proton donor caused by excitation promotes the ESIPT process. In addition, we find that the variation of atomic dipole moment corrected Hirshfeld population(ADCH) charge for proton acceptor induced by the AIE effect facilitates the ESIPT process. The results will be expected to deepen the understanding of ESIPT dynamics for luminophore under the AIE effect and provide insight into future design of high-efficient AIE compounds.展开更多
Unique nanofoams consisting of interweaved ultrathin graphene confining Zn–N–C dipoles (ZnNG) are constructed via calcination of Zn-coordinated precursor.Due to the introduction of local polar Zn–N–C configuration...Unique nanofoams consisting of interweaved ultrathin graphene confining Zn–N–C dipoles (ZnNG) are constructed via calcination of Zn-coordinated precursor.Due to the introduction of local polar Zn–N–C configurations,with hypersensitivity for mechanical stress,the piezoelectricity is created on the nonpiezoelectric graphene,and the hierarchical ZnNG exhibits obvious piezocatalytic activity of water splitting for H_(2) production even under mild agitation.The corresponding rate of H_(2) production is about 14.65 μmol g^(-1)h^(-1).It triggers a breakthrough in piezocatalytic H_(2) evolution under low-frequency vibration,and takes a significant step forward for piezocatalysis towards practical applications.Furthermore,the presented concept of confining atomic polar configuration for engineering piezoelectricity would open up new horizon for constructing new-type piezoelectrics based on both piezoelectric and nonpiezoelectric materials.展开更多
The possible geometrical structures and relative stabilities of semiconductor microclusters Ga\-\%n\%P\-\%n(n\%=1\_4) were studied by virtue of density functional calculations with generalized gradient approximation(B...The possible geometrical structures and relative stabilities of semiconductor microclusters Ga\-\%n\%P\-\%n(n\%=1\_4) were studied by virtue of density functional calculations with generalized gradient approximation(B3LYP). For the most stable isomers of Ga\-\%n\%P\-\%n(n\%=1\_4) clusters, the electronic structure, vibrational properties, dipole moment, polarizability and ionization potential were analyzed by means of HF, MP2, CISD and B3LYP methods with different basis sets.展开更多
One of the great difficulties in understanding nitrogen plasma elementary processes is the lack of an available database of the cross-sections of electron-impact excitations and radiations. Ab initio calculations of v...One of the great difficulties in understanding nitrogen plasma elementary processes is the lack of an available database of the cross-sections of electron-impact excitations and radiations. Ab initio calculations of vibrational excitation cross sections for electron collisions with nitrogen molecules in low-lying states using similarity function approach, such as a-a', a-w, B-B' and B-W transition systems, are reported here for the first time. In the meantime, the average excitation energies of neighboring levels of these systems have been calculated. In order to obtain the cross sections, accurate spectroscopic constants and transition dipole moments have been investigated. Potential energy curves and other electronic transition dipole moments for the low-lying states of N2 have been re-evaluated using complete active space self-consistent field (CASSCF) approach with aug-cc-pVqZ basis set. The calculated cross-sections could provide a database for studying the elementary processes and the properties in N2 plasma.展开更多
We observe enhanced terahertz (THz) radiation generated from a Si3N4 film-coated GaAs photoconductive dipole antenna. Compared to an uncoated antenna with identical electrode geometry and optical excitation power, the...We observe enhanced terahertz (THz) radiation generated from a Si3N4 film-coated GaAs photoconductive dipole antenna. Compared to an uncoated antenna with identical electrode geometry and optical excitation power, the Si3N4 film-coated antenna has a higher effective DC resistance and larger breakdown voltage. As a result, the peak amplitude of generated THz radiation is significantly enhanced due to the Si3N4 film-coated layer.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11574115 and 11704146)
文摘We theoretically investigate the excited state intramolecular proton transfer(ESIPT) behavior of the novel fluorophore bis-imine derivative molecule HNP which was designed based on the intersection of 1-(hydrazonomethyl)-naphthalene-2-ol and 1-pyrenecarboxaldehyde. Especially, the density functional theory(DFT) and time-dependent density functional theory(TDDFT) methods for HNP monomer are introduced. Moreover, the "our own n-layered integrated molecular orbital and molecular mechanics"(ONIOM) method(TDDFT:universal force field(UFF)) is used to reveal the aggregation-induced emission(AIE) effect on the ESIPT process for HNP in crystal. Our results confirm that the ESIPT process happens upon the photoexcitation for the HNP monomer and HNP in crystal, which is distinctly monitored by the optimized geometric structures and the potential energy curves. In addition, the results of potential energy curves reveal that the ESIPT process in HNP will be promoted by the AIE effect. Furthermore, the highest occupied molecular orbital(HOMO) and lowest unoccupied molecular orbital(LUMO) for the HNP monomer and HNP in crystal have been calculated. The calculation demonstrates that the electron density decrease of proton donor caused by excitation promotes the ESIPT process. In addition, we find that the variation of atomic dipole moment corrected Hirshfeld population(ADCH) charge for proton acceptor induced by the AIE effect facilitates the ESIPT process. The results will be expected to deepen the understanding of ESIPT dynamics for luminophore under the AIE effect and provide insight into future design of high-efficient AIE compounds.
基金supported by the National Natural Science Foundation of China (21802007)the Natural Science Foundation of Hunan Province (2020JJ5615)+1 种基金the Scientific Research Project of Hunan Provincial Department of Education (20B066)the Open Project Program of the State Key Laboratory of Photocatalysis on Energy and Environment (SKLPEE-202001), Fuzhou University。
文摘Unique nanofoams consisting of interweaved ultrathin graphene confining Zn–N–C dipoles (ZnNG) are constructed via calcination of Zn-coordinated precursor.Due to the introduction of local polar Zn–N–C configurations,with hypersensitivity for mechanical stress,the piezoelectricity is created on the nonpiezoelectric graphene,and the hierarchical ZnNG exhibits obvious piezocatalytic activity of water splitting for H_(2) production even under mild agitation.The corresponding rate of H_(2) production is about 14.65 μmol g^(-1)h^(-1).It triggers a breakthrough in piezocatalytic H_(2) evolution under low-frequency vibration,and takes a significant step forward for piezocatalysis towards practical applications.Furthermore,the presented concept of confining atomic polar configuration for engineering piezoelectricity would open up new horizon for constructing new-type piezoelectrics based on both piezoelectric and nonpiezoelectric materials.
基金Supported by the West Visiting Scholar Foundation of the Educational Ministry of China and the Natiional NaturalScience Foundation of China(No.10 3470 0 7)
文摘The possible geometrical structures and relative stabilities of semiconductor microclusters Ga\-\%n\%P\-\%n(n\%=1\_4) were studied by virtue of density functional calculations with generalized gradient approximation(B3LYP). For the most stable isomers of Ga\-\%n\%P\-\%n(n\%=1\_4) clusters, the electronic structure, vibrational properties, dipole moment, polarizability and ionization potential were analyzed by means of HF, MP2, CISD and B3LYP methods with different basis sets.
基金supported by National Natural Science Foundation of China(Nos.11175035,10875023)the National Magnetic Confinement Fusion Science Program of China(No.2013GB109005)+1 种基金Chinesisch-Deutsches Forschungsprojekt(GZ768)the Fundamental Research Fundsfor the Central Universities of China(No.DUT12ZD(G)01)
文摘One of the great difficulties in understanding nitrogen plasma elementary processes is the lack of an available database of the cross-sections of electron-impact excitations and radiations. Ab initio calculations of vibrational excitation cross sections for electron collisions with nitrogen molecules in low-lying states using similarity function approach, such as a-a', a-w, B-B' and B-W transition systems, are reported here for the first time. In the meantime, the average excitation energies of neighboring levels of these systems have been calculated. In order to obtain the cross sections, accurate spectroscopic constants and transition dipole moments have been investigated. Potential energy curves and other electronic transition dipole moments for the low-lying states of N2 have been re-evaluated using complete active space self-consistent field (CASSCF) approach with aug-cc-pVqZ basis set. The calculated cross-sections could provide a database for studying the elementary processes and the properties in N2 plasma.
基金This work is supported by the National Natural Science Foundation of China (No. 50077017) and the U.S.National Science Foundation. X.-C. Zhang is the author to whom the correspondence should be addressed,
文摘We observe enhanced terahertz (THz) radiation generated from a Si3N4 film-coated GaAs photoconductive dipole antenna. Compared to an uncoated antenna with identical electrode geometry and optical excitation power, the Si3N4 film-coated antenna has a higher effective DC resistance and larger breakdown voltage. As a result, the peak amplitude of generated THz radiation is significantly enhanced due to the Si3N4 film-coated layer.