Nitrogen vacancy(NV)color centers in diamond have useful applications in quantum sensing andfluorescent marking.They can be gen-erated experimentally by ion implantation,femtosecond lasers,and chemical vapor deposition...Nitrogen vacancy(NV)color centers in diamond have useful applications in quantum sensing andfluorescent marking.They can be gen-erated experimentally by ion implantation,femtosecond lasers,and chemical vapor deposition.However,there is a lack of studies of the yield of NV color centers at the atomic scale.In the molecular dynamics simulations described in this paper,NV color centers are pre-pared by ion implantation in diamond with pre-doped nitrogen and subsequent annealing.The differences between the yields of NV color centers produced by implantation of carbon(C)and nitrogen(N)ions,respectively,are investigated.It is found that C-ion implantation gives a greater yield of NV color centers and superior location accuracy.The effects of different pre-doping concentrations(400–1500 ppm)and implantation energies(1.0–3.0 keV)on the NV color center yield are analyzed,and it is shown that a pre-doping concentra-tion of 1000 ppm with 2 keV C-ion implantation can produce a 13%yield of NV color centers after 1600 K annealing for 7.4 ns.Finally,a brief comparison of the NV color center identification methods is presented,and it is found that the error rate of an analysis utiliz-ing the identify diamond structure coordination analysis method is reduced by about 7%compared with conventional identification+methods.展开更多
Direct synthesis of layer-tunable and transfer-free graphene on technologically important substrates is highly valued for various electronics and device applications.State of the art in the field is currently a two-st...Direct synthesis of layer-tunable and transfer-free graphene on technologically important substrates is highly valued for various electronics and device applications.State of the art in the field is currently a two-step process:a high-quality graphene layer synthesis on metal substrate through chemical vapor deposition(CVD)followed by delicate layer transfer onto device-relevant substrates.Here,we report a novel synthesis approach combining ion implantation for a precise graphene layer control and dual-metal smart Janus substrate for a diffusion-limiting graphene formation to directly synthesize large area,high quality,and layer-tunable graphene films on arbitrary substrates without the post-synthesis layer transfer process.Carbon(C)ion implantation was performed on Cu-Ni film deposited on a variety of device-relevant substrates.A well-controlled number of layers of graphene,primarily monolayer and bilayer,is precisely controlled by the equivalent fluence of the implanted C-atoms(1 monolayer~4×10^(15)C-atoms/cm^(2)).Upon thermal annealing to promote Cu-Ni alloying,the pre-implanted C-atoms in the Ni layer are pushed toward the Ni/substrate interface by the top Cu layer due to the poor C-solubility in Cu.As a result,the expelled C-atoms precipitate into a graphene structure at the interface facilitated by the Cu-like alloy catalysis.After removing the alloyed Cu-like surface layer,the layer-tunable graphene on the desired substrate is directly realized.The layer-selectivity,high quality,and uniformity of the graphene films are not only confirmed with detailed characterizations using a suite of surface analysis techniques but more importantly are successfully demonstrated by the excellent properties and performance of several devices directly fabricated from these graphene films.Molecular dynamics(MD)simulations using the reactive force field(ReaxFF)were performed to elucidate the graphene formation mechanisms in this novel synthesis approach.With the wide use of ion implantation technology in the microelectronics industry,this novel graphene synthesis approach with precise layer-tunability and transfer-free processing has the promise to advance efficient graphene-device manufacturing and expedite their versatile applications in many fields.展开更多
[Objective] This study was to investigate the effect of N+ ion beam implantation on the survival rate and mutation rate of biocontrol strain Bacillus subtilis. [Method] The factors influencing B. subtilis ion beam im...[Objective] This study was to investigate the effect of N+ ion beam implantation on the survival rate and mutation rate of biocontrol strain Bacillus subtilis. [Method] The factors influencing B. subtilis ion beam implantation, including culture time, dilution concentration, solvent, drying time of mycoderm were optimized. B. subtilis cells were implanted by using ion beam at dose of 2.0×10^14~4.0×10^14 ions/cm2 and the energy of 30 kev. Then the methods of culturing colonies confronting each other on plate and Oxford cup diffusion were used to screening strains. [Result] The optimal parameters were found as follows: culture in liquid for 20-24 h, dilution with sterile water to 106 cells/ml and drying time of 60 min for sample preparation; the optimal N+ ion beam implantation dose of 2.0×10^14~4.0×10^14 ions/cm2 at the energy of 30 kev, the survival rate of 8.43%-26.71% and the mutation rate of 3.50%-5.43%. [Conclusion] This study provided reference for ion beam implantation mutation of B. subtilis.展开更多
The influence of implantation of N+ions of different energies on the nanostructure of7049Al substrates and the corrosioninhibition of produced Al samples in a3.5%NaCl solution was studied.The X-ray diffraction(XRD)res...The influence of implantation of N+ions of different energies on the nanostructure of7049Al substrates and the corrosioninhibition of produced Al samples in a3.5%NaCl solution was studied.The X-ray diffraction(XRD)results confirmed the formationof AlN as a result of N+ion implantation.The atomic force microscope(AFM)results showed that grains of larger scale are formedby increasing N+energy which can be due to heat accumulation in the sample during implantation causing higher rate of diffusion inthe sample,hence decreasing the number of defects.Corrosion resistance of the samples was studied by the electrochemicalimpedance spectroscopy(EIS)measurements.Results showed that corrosion resistance of implanted Al increases with increasing N+ion energy.The equivalent circuits for the N+implanted Al samples with different energies were obtained,using the EIS data whichshowed strong dependence of the equivalent circuit elements on the surface morphology of the samples.Finally,the relationshipbetween corrosion inhibition and equivalent circuit elements was investigated.展开更多
In order to compare the contemporary and genetic variation effect on Arabidop-sis thaliana treated with N+ implantation and 7-ray radiation, the authors did some statistical comparison on the germinating rate and the ...In order to compare the contemporary and genetic variation effect on Arabidop-sis thaliana treated with N+ implantation and 7-ray radiation, the authors did some statistical comparison on the germinating rate and the development period, and analyzed the content of soluble proteins, the activity of some enzymes, isoenzymes profile, and along with the variation in genome DNA of two generations by RAPD. With N+ implantation there was an analogical 'saddle model' relationship between doses and the plant development, soluble proteins, the activity of some enzymes and isoenzymes profile. A certain connection might exist between the similar dose-effect relations among enzymes activity, isoenzymes profile and content of soluble proteins. Maybe, there also exists a certain connection between the mutants of development period and that of DNA variations, between the hereditability of the effect of N+ implantation on the isoenzymes, the activities of enzymes and the hereditability of DNA variations. So it is presumed that the implanted ions, maybe, have participated in metabolism process of organism including that of genome DNA, to consequently affect vital process, such as the changes of gene structure, gene expression manner and gene repair mechanism, and finally result in mutation on phenotype and molecular level. Furthermore, the results definitely showed that mutagenic mechanism induced by N+ implantation is very complicated and is much different from that induced by traditional 7-ray radiation.展开更多
Mutation induced by low energy ion beam implantation has been applied widely both in plants and microbes. However, due to the vacuum limitation, such ion implantation into animals was never studied except for silkworm...Mutation induced by low energy ion beam implantation has been applied widely both in plants and microbes. However, due to the vacuum limitation, such ion implantation into animals was never studied except for silkworm. In this study, Pupae of fruit fly were irradiated with different dosage N+ ions at energy 20 KeV to study the biological effect of ion beam on animal. The results showed a saddle like curve exists between incubate rate and dosage. Damage of pupae by ion beam implantation was observed using scanning electron microscope. Some individuals with incomplete wing were obtained after implantation but no similar character was observed in their offspring. Furthermore, about 5.47% mutants with wide variation appeared in M1 generation. Therefore, ion beam implantation could be widely used for mutation breeding.展开更多
Ever since the low energy N+ ion beam has been accepted that the mutation effects of ionizing radiation are attributed mainly to direct or indirect damage to DNA. Evidences based on naked DNA irradiation in support of...Ever since the low energy N+ ion beam has been accepted that the mutation effects of ionizing radiation are attributed mainly to direct or indirect damage to DNA. Evidences based on naked DNA irradiation in support of a mutation spectrum appears to be consistent, but direct proof of such results in vivo are limited. Using mutS, dam and/or dcm defective Eschericha coli imitator strains, an preliminary experimental system on induction of in vivo mutation spectra of low energy N+ ion beam has been established in this study. It was observed that the mutation rates of rifampicin resistance induced by N+ implantation were quite high, ranging from 9.2 x 10~8 to 4.9× 10~5 at the dosage of 5.2×1014 ions/cm2. Strains all had more than 90-fold higher mutation rate than its spontaneous mutation rate determined by this method. It reveals that base substitutions involve in induction of mutation of low energy nitrogen ion beam implantation. The mutation rates of mutator strains were nearly 500-fold (GM2929), 400-fold (GM5864) and 6-fold larger than that of AB1157. The GM2929 and GM5864 both lose the ability of repair DNA mismatch damage by virtue of both dam and dcm pathways defective (GM2929) or failing to assemble the repair complex (GM5864) respectively. It may explain the both strains had a similar higher mutation rate than GM124 did. It indicated that DNA cytosine methylase might play an important role in mismatch repair of DNA damage induced by N+ implantation. The further related research were also discussed.展开更多
Structural and morphological changes as well as corrosion behavior of N+implanted Al in 0.6 M NaCl solution as function of N+fluence are investigated.The x-ray diffraction results confirmed AlN formation.The atomic fo...Structural and morphological changes as well as corrosion behavior of N+implanted Al in 0.6 M NaCl solution as function of N+fluence are investigated.The x-ray diffraction results confirmed AlN formation.The atomic force microscope(AFM)images showed larger grains on the surface of Al with increasing N+fluence.This can be due to the increased number of impacts of N+with Al atoms and energy conversion to heat,which increases the diffusion rate of the incident ions in the target.Hence,the number of the grain boundaries is reduced,resulting in corrosion resistance enhancement.Electrochemical impedance spectroscopy(EIS)and polarization results showed the increase of corrosion resistance of Al with increasing N+fluence.EIS data was used to simulate equivalent electric circuits(EC)for the samples.Strong dependence of the surface morphology on the EC elements was observed.The scanning electron microscope(SEM)analysis of the samples after corrosion test also showed that the surfaces of the implanted Al samples remain more intact relative to the untreated Al sample,consistent with the EIS and polarization results.展开更多
Ion implantation, as a new biophysically mutagenic technique, has shown a great potential for crop breeding. By analyzing polymorphisms of genomic DNA through RAPD-based DNA analysis, we compared the frequency and eff...Ion implantation, as a new biophysically mutagenic technique, has shown a great potential for crop breeding. By analyzing polymorphisms of genomic DNA through RAPD-based DNA analysis, we compared the frequency and efficiency of somatic and germ-line mutations of Arabidopsis thaliana treated with N^+ ion implantation and γ-rays radiation. Our data support the following conclusions: (1) N^+ ion implantation can induce a much wider spectrum of mutations than γ-rays radiation does; (2) Unlike the linear correlation between the doses and their effect in γ-rays radiation, the dose-effect correlation in N^+ ion implantation is nonlinear; (3) Like γ-rays radiation, both somatic and germ-line mutations could be induced by N^+ ion implantation; and (4) RAPD deletion patterns are usually seen in N^+ ion implantation induced mutation.展开更多
Low energy ion beam has been widely applied in microbe breeding, plant breeding, gene transfer and cell modification. In this study, the Escherichia coli (E.coli) strain producing tryptophanase was irradiated by a l...Low energy ion beam has been widely applied in microbe breeding, plant breeding, gene transfer and cell modification. In this study, the Escherichia coli (E.coli) strain producing tryptophanase was irradiated by a low energy nitrogen ion beam with an energy of 10 keV at a fluence of 13 × 10^14 N^+/cm^2 when glycerin at a 15% concentration was used as a protector. The effect on the biomass of E. coli after N^+ implantation was analyzed in detail by statistic methods. The screening methods used in this study were proven to be effective. After continuous mutagenicity, a high-yield tryptophanase strain was selected and both its biomass and enzymatic activity were higher than those of the parent strain. The results of scale-up production showed that the biomass could reach wet weight 8.2 g/L and 110 g L-tryptophan could be formed in the volume of the 1 l enzymatic reaction system.展开更多
The different change tendencies of 2-and 3-dimensional surface roughnesses of 40Cr steel aremeasured and analysed.In 2-dimensional parameters,the data are measured amplitude parametersR<sub>a</sub> ,R<s...The different change tendencies of 2-and 3-dimensional surface roughnesses of 40Cr steel aremeasured and analysed.In 2-dimensional parameters,the data are measured amplitude parametersR<sub>a</sub> ,R<sub>q</sub> ,R<sub>pn</sub>,spacing parameters S<sub>m</sub>,S,q and shape parameters Δq,T<sub>p</sub> %,R<sub>sk</sub>,R<sub>ku</sub>..In3-dimensional parameters,the similar amplitude and shape parameters are measured.The au-thors found that ion implantation lcads to reduction of the values of the amplitude parameters ofthe surface roughness remarkably.The values of the spacing parameters have no regular changes.The changes of surface profiles before and after ion implantations have been measured in detail.Inaddition,the auto-correlation function and the power spectrum are analysed for the surfaces ofdifferent implanting parameters.It is concluded that in the observed frequency range,the intensi-ties of various frequencies decrease widely and the coefficients of the auto-correlation of surfacesdecrease after ion implantation.展开更多
In this paper amino acids synthesis in aqueous solution induced by ion implantation, which was possibly ubiquitous on primitive Earth, is investigated. As a discharge using a graphite rod as the anode under a nitrogen...In this paper amino acids synthesis in aqueous solution induced by ion implantation, which was possibly ubiquitous on primitive Earth, is investigated. As a discharge using a graphite rod as the anode under a nitrogen atmosphere was performed against ammonia water, it was found that three kinds of amino acids were produced. They were glycine, serine and alanine. By introducing ion implantation into the carboxylate solution, ammonia and amino acids were also formed via nitrogen deposition/fixation. Another isotopic experiment showed that both OH and H radicals played a crucial role in the arc-discharge-promoted reactions in aqueous solution Therefore, we believe that the impact of ions in the original atmospheric conditions might have functioned as a promoter in the chemical origin and evolution of life.展开更多
In the present study autotetraploid rice IR36-4X was treated by an ion implantation technique with nitrogen ion beams. A polyembryonic mutant (named IR36-Shuang) was identified in the M2 generation. The mutant line ...In the present study autotetraploid rice IR36-4X was treated by an ion implantation technique with nitrogen ion beams. A polyembryonic mutant (named IR36-Shuang) was identified in the M2 generation. The mutant line and its offspring were systematically investigated in regard to their major agronomic properties and the rate of polyembryonic seedling in the M3-M6 generation. The abnormal phenomena in the embryo sac development and the cytological mechanism of the initiation of additional embryo in IR36-Shuang were observed by Laser Scanning Confocal Microscopy. The results were as follows. 1) The plant height, the panicle length and 1000 grain weight of IRB6-Shuang were lower than that of its control by 35.41%, 5.08% and 15.72% respectively, Moreover, the setting percentage decreased 12.39% compared with that in normal IRB6-4X plants. 2) The polyembryonic trait of IRB6-Shuang was genetically stable and the frequency of the polyembryonic seedlings in the IR36-Shuang line was also relatively stable. 3) The rate of abnormal embryo sacs in IR36-Shuang was significantly higher than that in the control IR36-4X. 4) The additional embryo in IR36-Shuang might arise from the double Jet of embryo sacs in a single owry, antipodal cells or endosperm cells. These results suggest that IRB6-Shuang is a polyembryonic mutant and a new apomixis rice line induced by low energy ion implantation. The prospects for the application in production of the IR36-Shuang line are also discussed. The present study may provide a basis for future investigations of apomixis rice breeding via the ion implantation biotechnology.展开更多
Mutagenesis and retrotransposons have a close relationship, but little attention has been paid yet to the activity of retrotransposons produced by physical mutagens. The variation of retrotransposon WIS 2-1A activity ...Mutagenesis and retrotransposons have a close relationship, but little attention has been paid yet to the activity of retrotransposons produced by physical mutagens. The variation of retrotransposon WIS 2-1A activity in wheat (Triticum aestivum L.) embryos at three different growth times (30 h, 45 h and 60 h) was investigated after they had been treated with N^+ implantation in a vacuum of 5× 10^-2 Pa and irradiation by ^60Coγ-ray respectively. For each of the three growth times the expression of WIS 2-1A showed almost entirely a same trend of downregulation, upregulation, then downregulation, and upregulation again with the increase in dose of N^+ implantation, but the expression appeared irregular with the increase in irradiation of ^60Coγ-ray. In conclusion, the acutely activating effect of WIS 2-1A stimulated by vacuum and high dose N^+ implantation within a shorter incubation time may provide a convenient tool to advance the research on mutagenic breeding and function genes.展开更多
Various doses of nitrogen ions were implanted into the surface of pure titanium, Ti6Al7Nb and Ti6Al4V, by plasma immersion ion implantation. Torsional fretting wear tests involving flat specimens of no-treated and tre...Various doses of nitrogen ions were implanted into the surface of pure titanium, Ti6Al7Nb and Ti6Al4V, by plasma immersion ion implantation. Torsional fretting wear tests involving flat specimens of no-treated and treated titanium, as well as its alloys, against a ZrO2 ball contact were performed on a torsional fretting wear test rig using a simulated physiological medium of serum solution. The treated surfaces were characterized, and the effect of implantation dose on torsional fretting behavior was discussed in detail. The results showed that the torsional fretting running and damage behavior of titanium and its alloys were strongly dependent on the dose of the implanted nitrogen ions and the angular displacement amplitude. The torsional fretting running boundary moved to smaller angular displacement amplitude, and the central light damage zone decreased, as the ion dose increased. The wear mechanisms of titanium and its alloys were oxidative wear, abrasive wear and delamination, with abrasive wear as the most common mechanism of the ion implantation layers.展开更多
The biological effects during seed germination were investigated after the dry seeds of Stevia rebaudianum Bertoni were implanted with carbon ion beam of 75 keV and 10 14 ions/cm 2. The results showed that the g...The biological effects during seed germination were investigated after the dry seeds of Stevia rebaudianum Bertoni were implanted with carbon ion beam of 75 keV and 10 14 ions/cm 2. The results showed that the germination rate of carbon ion implanted seeds was slightly higher than that of the control, but the survival rate of the treated seedlings, on the contrary, was lower than that of the control (P<0.02), while the height of the treated seedlings was significantly higher than that of the control (P<0.01). On the 4th day after germination, the leaf cell wall in the treated group was thick, some high electron_dense substance deposited in the enlarged plasmodesma; Cell membrane creased with high electron_dense granules deposited on it. The plasma membrane protruded towards cell wall, and the granules shifted via plasmodesma or deposited onto cell wall. These phenomena may be related to the conveyance of implanted ions across cell wall, or be related to the accumulation of callose. In addition, the implantation of carbon ions could increase the lamellae of the chloroplast and cause high development of the chloroplast which sometimes contained two plastid centers in an individual chloroplast. Also, the highly developed cristae, abundant mitochondria and typical crystalloid structure in microbody could be found. All these results indicated that the anabolic and catabolic activities in the seedlings implanted with carbon ions before germination were obviously more active than those in the controls.展开更多
A high speed LIGBT with localized lifetime control by using high dose and low en ergy helium implantation(LC-LIGBT) is proposed.Compared with conventional LIGB Ts,particle irradiation results show that trade-off relat...A high speed LIGBT with localized lifetime control by using high dose and low en ergy helium implantation(LC-LIGBT) is proposed.Compared with conventional LIGB Ts,particle irradiation results show that trade-off relationship between turn- off time and forward voltage drop is improved.At the same time,the forward volta ge drop and turn-off time of such device are researched,when localized lifetime control region place near the p+-n junction,even in p+ anode.The results s how for the first time,helium ions,which stop in the p+ anode,also contribute to the forward voltage drop increasing and turn-off time reducing.展开更多
Polycrystalline diamond thin films are deposited on an n-type Si substrates by hot filament chemical vapor deposition,and then are implanted with boron ions in a 200keV ion implanter.In order to achieve a better distr...Polycrystalline diamond thin films are deposited on an n-type Si substrates by hot filament chemical vapor deposition,and then are implanted with boron ions in a 200keV ion implanter.In order to achieve a better distribution of the implanted element,boron ions are implanted by two steps:implanting boron ions with the energy of 70keV first,and then with the energy of 100keV.The homogeneous distribution of the B ion is gained.The current-voltage characteristics of the samples are studied.It is found that the p-n heterojunction effect is achieved in these samples.展开更多
Synthetic silicides with good properties were prepared,as Y ions were implanted into silicon using metal vapor vacuum arc (MEVVA) ion implantor and annealed by Rapid Thermal Annealing (RTA).The structure of synthetic ...Synthetic silicides with good properties were prepared,as Y ions were implanted into silicon using metal vapor vacuum arc (MEVVA) ion implantor and annealed by Rapid Thermal Annealing (RTA).The structure of synthetic silicides has been investigated with the analysis of channeled low angle emergence and TEM.Three layers could be observed in the implanted region as the implanting ion flux is selected as 25μA/cm\+2.The thickness of the silicide layer is about 60—80nm.The defect density N \-d and sheet resistance R \-s decrease with the increase of the ion flux.After RTA annealing of the implanted sample,the N\-d and R\-s decreased obviously.R\-s decreased from 54Ω/□ to 14Ω/□.The minimum of resistivity is 84μΩ·cm.It is evident that electrical properties of the Y silicides can be improved by RTA.The formation of the silicides with YSi and YSi\-2 are confirmed by X\|ray diffraction (XRD) analysis.With the analysis of low angle emergence,important information exposed from the depth profiles of atoms and lattice distortion in an implanted region would be used to study the synthesis of silicides.展开更多
A1 and N were introduced into copper substrate using plasma immersion ion implantation (PIII) in order to enhance its hardness and oxidation resistance. The dosage of N ion is 5 × 1016 cm-2, and range of dosage...A1 and N were introduced into copper substrate using plasma immersion ion implantation (PIII) in order to enhance its hardness and oxidation resistance. The dosage of N ion is 5 × 1016 cm-2, and range of dosage of A1 ion is 5× 1016-2× 1017 cm-2. The oxidation tests indicate that the copper samples after undergoing PIII possess higher oxidation resistance. The degree of oxidation resistance is found to vary with implantation dosage of AI ion. The antibacterial tests also reveal that the plasma implanted copper specimens have excellent antibacterial resistance against Staphylococcus aureus, which are similar to pure copper.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.52035009 and 51761135106)the State Key Laboratory of Precision Measuring Technology and Instruments(Pilt1705)+1 种基金the Henan Key Laboratory of Intelligent Manufacturing Equipment Integration for Superhard Materials(JDKJ2022-01)the“111”project by the State Administration of Foreign Experts Affairs and the Ministry of Education of China(Grant No.B07014).
文摘Nitrogen vacancy(NV)color centers in diamond have useful applications in quantum sensing andfluorescent marking.They can be gen-erated experimentally by ion implantation,femtosecond lasers,and chemical vapor deposition.However,there is a lack of studies of the yield of NV color centers at the atomic scale.In the molecular dynamics simulations described in this paper,NV color centers are pre-pared by ion implantation in diamond with pre-doped nitrogen and subsequent annealing.The differences between the yields of NV color centers produced by implantation of carbon(C)and nitrogen(N)ions,respectively,are investigated.It is found that C-ion implantation gives a greater yield of NV color centers and superior location accuracy.The effects of different pre-doping concentrations(400–1500 ppm)and implantation energies(1.0–3.0 keV)on the NV color center yield are analyzed,and it is shown that a pre-doping concentra-tion of 1000 ppm with 2 keV C-ion implantation can produce a 13%yield of NV color centers after 1600 K annealing for 7.4 ns.Finally,a brief comparison of the NV color center identification methods is presented,and it is found that the error rate of an analysis utiliz-ing the identify diamond structure coordination analysis method is reduced by about 7%compared with conventional identification+methods.
基金supported by the National Key R&D Program of China(No.2022YFA1203400)the National Natural Science Foundation of China under Grant(Nos.62174093 and 12075307)+7 种基金the Ningbo Youth Science and Technology Innovation Leading Talent Project under Grant(No.2023QL006)the Open Research Fund of China National Key Laboratory of Materials for Integrated Circuits(No.NKLJC-K2023-01)Guangdong Basic and Applied Basic Research Foundation(No.2022A1515110628)the support by LDRD Seedling ER project at Los Alamos National Laboratory,NM,USA(No.20210867ER)partially supported by Guangdong Provincial Key Laboratory of Computational Science and Material Design(No.2019B030301001)supported by Center for Computational Science and Engineering at Southern University of Science and TechnologyShanghai Rising-Star Program(No.21QA1410900)the support from the Youth Innovation Promotion Association CAS
文摘Direct synthesis of layer-tunable and transfer-free graphene on technologically important substrates is highly valued for various electronics and device applications.State of the art in the field is currently a two-step process:a high-quality graphene layer synthesis on metal substrate through chemical vapor deposition(CVD)followed by delicate layer transfer onto device-relevant substrates.Here,we report a novel synthesis approach combining ion implantation for a precise graphene layer control and dual-metal smart Janus substrate for a diffusion-limiting graphene formation to directly synthesize large area,high quality,and layer-tunable graphene films on arbitrary substrates without the post-synthesis layer transfer process.Carbon(C)ion implantation was performed on Cu-Ni film deposited on a variety of device-relevant substrates.A well-controlled number of layers of graphene,primarily monolayer and bilayer,is precisely controlled by the equivalent fluence of the implanted C-atoms(1 monolayer~4×10^(15)C-atoms/cm^(2)).Upon thermal annealing to promote Cu-Ni alloying,the pre-implanted C-atoms in the Ni layer are pushed toward the Ni/substrate interface by the top Cu layer due to the poor C-solubility in Cu.As a result,the expelled C-atoms precipitate into a graphene structure at the interface facilitated by the Cu-like alloy catalysis.After removing the alloyed Cu-like surface layer,the layer-tunable graphene on the desired substrate is directly realized.The layer-selectivity,high quality,and uniformity of the graphene films are not only confirmed with detailed characterizations using a suite of surface analysis techniques but more importantly are successfully demonstrated by the excellent properties and performance of several devices directly fabricated from these graphene films.Molecular dynamics(MD)simulations using the reactive force field(ReaxFF)were performed to elucidate the graphene formation mechanisms in this novel synthesis approach.With the wide use of ion implantation technology in the microelectronics industry,this novel graphene synthesis approach with precise layer-tunability and transfer-free processing has the promise to advance efficient graphene-device manufacturing and expedite their versatile applications in many fields.
基金Supported by the"Bud Plan"Project of Beijing Academy of Science and Technology(No.022)~~
文摘[Objective] This study was to investigate the effect of N+ ion beam implantation on the survival rate and mutation rate of biocontrol strain Bacillus subtilis. [Method] The factors influencing B. subtilis ion beam implantation, including culture time, dilution concentration, solvent, drying time of mycoderm were optimized. B. subtilis cells were implanted by using ion beam at dose of 2.0×10^14~4.0×10^14 ions/cm2 and the energy of 30 kev. Then the methods of culturing colonies confronting each other on plate and Oxford cup diffusion were used to screening strains. [Result] The optimal parameters were found as follows: culture in liquid for 20-24 h, dilution with sterile water to 106 cells/ml and drying time of 60 min for sample preparation; the optimal N+ ion beam implantation dose of 2.0×10^14~4.0×10^14 ions/cm2 at the energy of 30 kev, the survival rate of 8.43%-26.71% and the mutation rate of 3.50%-5.43%. [Conclusion] This study provided reference for ion beam implantation mutation of B. subtilis.
基金University of Tehran and the Iran National Science Foundation(INSF)center of excellence for structural and microscopic properties of matter,Department of Physics,University of Tehran for partial support of this work
文摘The influence of implantation of N+ions of different energies on the nanostructure of7049Al substrates and the corrosioninhibition of produced Al samples in a3.5%NaCl solution was studied.The X-ray diffraction(XRD)results confirmed the formationof AlN as a result of N+ion implantation.The atomic force microscope(AFM)results showed that grains of larger scale are formedby increasing N+energy which can be due to heat accumulation in the sample during implantation causing higher rate of diffusion inthe sample,hence decreasing the number of defects.Corrosion resistance of the samples was studied by the electrochemicalimpedance spectroscopy(EIS)measurements.Results showed that corrosion resistance of implanted Al increases with increasing N+ion energy.The equivalent circuits for the N+implanted Al samples with different energies were obtained,using the EIS data whichshowed strong dependence of the equivalent circuit elements on the surface morphology of the samples.Finally,the relationshipbetween corrosion inhibition and equivalent circuit elements was investigated.
基金The project supported by the National Natural Science Foundation of China (No. 10435020)the project of backbone youth teachers in high Colleges of Education Department of China Central Government
文摘In order to compare the contemporary and genetic variation effect on Arabidop-sis thaliana treated with N+ implantation and 7-ray radiation, the authors did some statistical comparison on the germinating rate and the development period, and analyzed the content of soluble proteins, the activity of some enzymes, isoenzymes profile, and along with the variation in genome DNA of two generations by RAPD. With N+ implantation there was an analogical 'saddle model' relationship between doses and the plant development, soluble proteins, the activity of some enzymes and isoenzymes profile. A certain connection might exist between the similar dose-effect relations among enzymes activity, isoenzymes profile and content of soluble proteins. Maybe, there also exists a certain connection between the mutants of development period and that of DNA variations, between the hereditability of the effect of N+ implantation on the isoenzymes, the activities of enzymes and the hereditability of DNA variations. So it is presumed that the implanted ions, maybe, have participated in metabolism process of organism including that of genome DNA, to consequently affect vital process, such as the changes of gene structure, gene expression manner and gene repair mechanism, and finally result in mutation on phenotype and molecular level. Furthermore, the results definitely showed that mutagenic mechanism induced by N+ implantation is very complicated and is much different from that induced by traditional 7-ray radiation.
文摘Mutation induced by low energy ion beam implantation has been applied widely both in plants and microbes. However, due to the vacuum limitation, such ion implantation into animals was never studied except for silkworm. In this study, Pupae of fruit fly were irradiated with different dosage N+ ions at energy 20 KeV to study the biological effect of ion beam on animal. The results showed a saddle like curve exists between incubate rate and dosage. Damage of pupae by ion beam implantation was observed using scanning electron microscope. Some individuals with incomplete wing were obtained after implantation but no similar character was observed in their offspring. Furthermore, about 5.47% mutants with wide variation appeared in M1 generation. Therefore, ion beam implantation could be widely used for mutation breeding.
基金The project supported by the National Nature Science Foundation of China (No. 19890300)
文摘Ever since the low energy N+ ion beam has been accepted that the mutation effects of ionizing radiation are attributed mainly to direct or indirect damage to DNA. Evidences based on naked DNA irradiation in support of a mutation spectrum appears to be consistent, but direct proof of such results in vivo are limited. Using mutS, dam and/or dcm defective Eschericha coli imitator strains, an preliminary experimental system on induction of in vivo mutation spectra of low energy N+ ion beam has been established in this study. It was observed that the mutation rates of rifampicin resistance induced by N+ implantation were quite high, ranging from 9.2 x 10~8 to 4.9× 10~5 at the dosage of 5.2×1014 ions/cm2. Strains all had more than 90-fold higher mutation rate than its spontaneous mutation rate determined by this method. It reveals that base substitutions involve in induction of mutation of low energy nitrogen ion beam implantation. The mutation rates of mutator strains were nearly 500-fold (GM2929), 400-fold (GM5864) and 6-fold larger than that of AB1157. The GM2929 and GM5864 both lose the ability of repair DNA mismatch damage by virtue of both dam and dcm pathways defective (GM2929) or failing to assemble the repair complex (GM5864) respectively. It may explain the both strains had a similar higher mutation rate than GM124 did. It indicated that DNA cytosine methylase might play an important role in mismatch repair of DNA damage induced by N+ implantation. The further related research were also discussed.
文摘Structural and morphological changes as well as corrosion behavior of N+implanted Al in 0.6 M NaCl solution as function of N+fluence are investigated.The x-ray diffraction results confirmed AlN formation.The atomic force microscope(AFM)images showed larger grains on the surface of Al with increasing N+fluence.This can be due to the increased number of impacts of N+with Al atoms and energy conversion to heat,which increases the diffusion rate of the incident ions in the target.Hence,the number of the grain boundaries is reduced,resulting in corrosion resistance enhancement.Electrochemical impedance spectroscopy(EIS)and polarization results showed the increase of corrosion resistance of Al with increasing N+fluence.EIS data was used to simulate equivalent electric circuits(EC)for the samples.Strong dependence of the surface morphology on the EC elements was observed.The scanning electron microscope(SEM)analysis of the samples after corrosion test also showed that the surfaces of the implanted Al samples remain more intact relative to the untreated Al sample,consistent with the EIS and polarization results.
基金supported by the National Natural Science Foundation of China (Nos. 30570434, 10435020)special funding from the Ministry of Education of China for Backbone Young Teachers at Key Universities
文摘Ion implantation, as a new biophysically mutagenic technique, has shown a great potential for crop breeding. By analyzing polymorphisms of genomic DNA through RAPD-based DNA analysis, we compared the frequency and efficiency of somatic and germ-line mutations of Arabidopsis thaliana treated with N^+ ion implantation and γ-rays radiation. Our data support the following conclusions: (1) N^+ ion implantation can induce a much wider spectrum of mutations than γ-rays radiation does; (2) Unlike the linear correlation between the doses and their effect in γ-rays radiation, the dose-effect correlation in N^+ ion implantation is nonlinear; (3) Like γ-rays radiation, both somatic and germ-line mutations could be induced by N^+ ion implantation; and (4) RAPD deletion patterns are usually seen in N^+ ion implantation induced mutation.
文摘Low energy ion beam has been widely applied in microbe breeding, plant breeding, gene transfer and cell modification. In this study, the Escherichia coli (E.coli) strain producing tryptophanase was irradiated by a low energy nitrogen ion beam with an energy of 10 keV at a fluence of 13 × 10^14 N^+/cm^2 when glycerin at a 15% concentration was used as a protector. The effect on the biomass of E. coli after N^+ implantation was analyzed in detail by statistic methods. The screening methods used in this study were proven to be effective. After continuous mutagenicity, a high-yield tryptophanase strain was selected and both its biomass and enzymatic activity were higher than those of the parent strain. The results of scale-up production showed that the biomass could reach wet weight 8.2 g/L and 110 g L-tryptophan could be formed in the volume of the 1 l enzymatic reaction system.
文摘The different change tendencies of 2-and 3-dimensional surface roughnesses of 40Cr steel aremeasured and analysed.In 2-dimensional parameters,the data are measured amplitude parametersR<sub>a</sub> ,R<sub>q</sub> ,R<sub>pn</sub>,spacing parameters S<sub>m</sub>,S,q and shape parameters Δq,T<sub>p</sub> %,R<sub>sk</sub>,R<sub>ku</sub>..In3-dimensional parameters,the similar amplitude and shape parameters are measured.The au-thors found that ion implantation lcads to reduction of the values of the amplitude parameters ofthe surface roughness remarkably.The values of the spacing parameters have no regular changes.The changes of surface profiles before and after ion implantations have been measured in detail.Inaddition,the auto-correlation function and the power spectrum are analysed for the surfaces ofdifferent implanting parameters.It is concluded that in the observed frequency range,the intensi-ties of various frequencies decrease widely and the coefficients of the auto-correlation of surfacesdecrease after ion implantation.
基金the National Natural Science Foundation of China(No.29772033)
文摘In this paper amino acids synthesis in aqueous solution induced by ion implantation, which was possibly ubiquitous on primitive Earth, is investigated. As a discharge using a graphite rod as the anode under a nitrogen atmosphere was performed against ammonia water, it was found that three kinds of amino acids were produced. They were glycine, serine and alanine. By introducing ion implantation into the carboxylate solution, ammonia and amino acids were also formed via nitrogen deposition/fixation. Another isotopic experiment showed that both OH and H radicals played a crucial role in the arc-discharge-promoted reactions in aqueous solution Therefore, we believe that the impact of ions in the original atmospheric conditions might have functioned as a promoter in the chemical origin and evolution of life.
基金supported by National Key Projects of China(No.2001BA302B)
文摘In the present study autotetraploid rice IR36-4X was treated by an ion implantation technique with nitrogen ion beams. A polyembryonic mutant (named IR36-Shuang) was identified in the M2 generation. The mutant line and its offspring were systematically investigated in regard to their major agronomic properties and the rate of polyembryonic seedling in the M3-M6 generation. The abnormal phenomena in the embryo sac development and the cytological mechanism of the initiation of additional embryo in IR36-Shuang were observed by Laser Scanning Confocal Microscopy. The results were as follows. 1) The plant height, the panicle length and 1000 grain weight of IRB6-Shuang were lower than that of its control by 35.41%, 5.08% and 15.72% respectively, Moreover, the setting percentage decreased 12.39% compared with that in normal IRB6-4X plants. 2) The polyembryonic trait of IRB6-Shuang was genetically stable and the frequency of the polyembryonic seedlings in the IR36-Shuang line was also relatively stable. 3) The rate of abnormal embryo sacs in IR36-Shuang was significantly higher than that in the control IR36-4X. 4) The additional embryo in IR36-Shuang might arise from the double Jet of embryo sacs in a single owry, antipodal cells or endosperm cells. These results suggest that IRB6-Shuang is a polyembryonic mutant and a new apomixis rice line induced by low energy ion implantation. The prospects for the application in production of the IR36-Shuang line are also discussed. The present study may provide a basis for future investigations of apomixis rice breeding via the ion implantation biotechnology.
基金supported by National Natural Science Foundation of China(Nos.10505018,30800204)the Chinese Ministry of Agriculture(No.200803034)
文摘Mutagenesis and retrotransposons have a close relationship, but little attention has been paid yet to the activity of retrotransposons produced by physical mutagens. The variation of retrotransposon WIS 2-1A activity in wheat (Triticum aestivum L.) embryos at three different growth times (30 h, 45 h and 60 h) was investigated after they had been treated with N^+ implantation in a vacuum of 5× 10^-2 Pa and irradiation by ^60Coγ-ray respectively. For each of the three growth times the expression of WIS 2-1A showed almost entirely a same trend of downregulation, upregulation, then downregulation, and upregulation again with the increase in dose of N^+ implantation, but the expression appeared irregular with the increase in irradiation of ^60Coγ-ray. In conclusion, the acutely activating effect of WIS 2-1A stimulated by vacuum and high dose N^+ implantation within a shorter incubation time may provide a convenient tool to advance the research on mutagenic breeding and function genes.
基金Projects(U1530136,51375407)supported by the National Natural Science Foundation of China
文摘Various doses of nitrogen ions were implanted into the surface of pure titanium, Ti6Al7Nb and Ti6Al4V, by plasma immersion ion implantation. Torsional fretting wear tests involving flat specimens of no-treated and treated titanium, as well as its alloys, against a ZrO2 ball contact were performed on a torsional fretting wear test rig using a simulated physiological medium of serum solution. The treated surfaces were characterized, and the effect of implantation dose on torsional fretting behavior was discussed in detail. The results showed that the torsional fretting running and damage behavior of titanium and its alloys were strongly dependent on the dose of the implanted nitrogen ions and the angular displacement amplitude. The torsional fretting running boundary moved to smaller angular displacement amplitude, and the central light damage zone decreased, as the ion dose increased. The wear mechanisms of titanium and its alloys were oxidative wear, abrasive wear and delamination, with abrasive wear as the most common mechanism of the ion implantation layers.
文摘The biological effects during seed germination were investigated after the dry seeds of Stevia rebaudianum Bertoni were implanted with carbon ion beam of 75 keV and 10 14 ions/cm 2. The results showed that the germination rate of carbon ion implanted seeds was slightly higher than that of the control, but the survival rate of the treated seedlings, on the contrary, was lower than that of the control (P<0.02), while the height of the treated seedlings was significantly higher than that of the control (P<0.01). On the 4th day after germination, the leaf cell wall in the treated group was thick, some high electron_dense substance deposited in the enlarged plasmodesma; Cell membrane creased with high electron_dense granules deposited on it. The plasma membrane protruded towards cell wall, and the granules shifted via plasmodesma or deposited onto cell wall. These phenomena may be related to the conveyance of implanted ions across cell wall, or be related to the accumulation of callose. In addition, the implantation of carbon ions could increase the lamellae of the chloroplast and cause high development of the chloroplast which sometimes contained two plastid centers in an individual chloroplast. Also, the highly developed cristae, abundant mitochondria and typical crystalloid structure in microbody could be found. All these results indicated that the anabolic and catabolic activities in the seedlings implanted with carbon ions before germination were obviously more active than those in the controls.
文摘A high speed LIGBT with localized lifetime control by using high dose and low en ergy helium implantation(LC-LIGBT) is proposed.Compared with conventional LIGB Ts,particle irradiation results show that trade-off relationship between turn- off time and forward voltage drop is improved.At the same time,the forward volta ge drop and turn-off time of such device are researched,when localized lifetime control region place near the p+-n junction,even in p+ anode.The results s how for the first time,helium ions,which stop in the p+ anode,also contribute to the forward voltage drop increasing and turn-off time reducing.
文摘Polycrystalline diamond thin films are deposited on an n-type Si substrates by hot filament chemical vapor deposition,and then are implanted with boron ions in a 200keV ion implanter.In order to achieve a better distribution of the implanted element,boron ions are implanted by two steps:implanting boron ions with the energy of 70keV first,and then with the energy of 100keV.The homogeneous distribution of the B ion is gained.The current-voltage characteristics of the samples are studied.It is found that the p-n heterojunction effect is achieved in these samples.
基金Project Supported by National Natural Science Foundation of China ( Grant No.59671 0 51 ) and by National HighTechnology Resea
文摘Synthetic silicides with good properties were prepared,as Y ions were implanted into silicon using metal vapor vacuum arc (MEVVA) ion implantor and annealed by Rapid Thermal Annealing (RTA).The structure of synthetic silicides has been investigated with the analysis of channeled low angle emergence and TEM.Three layers could be observed in the implanted region as the implanting ion flux is selected as 25μA/cm\+2.The thickness of the silicide layer is about 60—80nm.The defect density N \-d and sheet resistance R \-s decrease with the increase of the ion flux.After RTA annealing of the implanted sample,the N\-d and R\-s decreased obviously.R\-s decreased from 54Ω/□ to 14Ω/□.The minimum of resistivity is 84μΩ·cm.It is evident that electrical properties of the Y silicides can be improved by RTA.The formation of the silicides with YSi and YSi\-2 are confirmed by X\|ray diffraction (XRD) analysis.With the analysis of low angle emergence,important information exposed from the depth profiles of atoms and lattice distortion in an implanted region would be used to study the synthesis of silicides.
基金Project(9231083) supported by Yunnan Aerospace Industry Corporation Contract Research,ChinaProject(9220061) supported by City University of Hong Kong Donation Research Grant,China
文摘A1 and N were introduced into copper substrate using plasma immersion ion implantation (PIII) in order to enhance its hardness and oxidation resistance. The dosage of N ion is 5 × 1016 cm-2, and range of dosage of A1 ion is 5× 1016-2× 1017 cm-2. The oxidation tests indicate that the copper samples after undergoing PIII possess higher oxidation resistance. The degree of oxidation resistance is found to vary with implantation dosage of AI ion. The antibacterial tests also reveal that the plasma implanted copper specimens have excellent antibacterial resistance against Staphylococcus aureus, which are similar to pure copper.