Mutagenesis and retrotransposons have a close relationship, but little attention has been paid yet to the activity of retrotransposons produced by physical mutagens. The variation of retrotransposon WIS 2-1A activity ...Mutagenesis and retrotransposons have a close relationship, but little attention has been paid yet to the activity of retrotransposons produced by physical mutagens. The variation of retrotransposon WIS 2-1A activity in wheat (Triticum aestivum L.) embryos at three different growth times (30 h, 45 h and 60 h) was investigated after they had been treated with N^+ implantation in a vacuum of 5× 10^-2 Pa and irradiation by ^60Coγ-ray respectively. For each of the three growth times the expression of WIS 2-1A showed almost entirely a same trend of downregulation, upregulation, then downregulation, and upregulation again with the increase in dose of N^+ implantation, but the expression appeared irregular with the increase in irradiation of ^60Coγ-ray. In conclusion, the acutely activating effect of WIS 2-1A stimulated by vacuum and high dose N^+ implantation within a shorter incubation time may provide a convenient tool to advance the research on mutagenic breeding and function genes.展开更多
In this paper, surface modification of the strut dowel used in ITER PF support is reported. Different ions (nitrogen/titanium) with different doses are implanted into the surface of strut dowel. The result of Auger ...In this paper, surface modification of the strut dowel used in ITER PF support is reported. Different ions (nitrogen/titanium) with different doses are implanted into the surface of strut dowel. The result of Auger Electron Spectroscopy (AES) indicates that nitrogen can be implanted more deeply than titanium under the implantation condition of 60 kV accelerating voltage and a dose of 8×10^17/cm2 nitrogen. Surface Micro Hardness (SMH) and wear resistance are improved remarkably. Further SEM observation shows that there are no obvious scratches and damages after wear test.展开更多
he present paper focuses on the modifying effects of ion beam mixing, ion im-planting and ion sputtering on hydrogen evolution electrodes. It was discovered thatthe four types of electrodes possessed excellent catalyt...he present paper focuses on the modifying effects of ion beam mixing, ion im-planting and ion sputtering on hydrogen evolution electrodes. It was discovered thatthe four types of electrodes possessed excellent catalytic activity in acid or alkalinemedia and potential stability in long term electrolysis of water under high currentdensity. Their stability and applying life-span greatly surpass those of other elec-trodes activated by electrodepositing and other method. The effects of temperatureand roughness on function of electrodes were also examined. XPS and AES wereapplied to analyse the surface composition and bond states of the electrodes, andthe distribution of concentration varying with depth, and to explain the law of theexperiments .展开更多
We have developed a large number of exocrine glands on liquorice leaves and facilitated polysaccharide secretion. Liquorice polysaccharide possesses stronger bound water affinity to gaseous water compared with sucrose...We have developed a large number of exocrine glands on liquorice leaves and facilitated polysaccharide secretion. Liquorice polysaccharide possesses stronger bound water affinity to gaseous water compared with sucrose and glucose. Our results show that the bound water affinity of liquorice polysaccharide to gaseous water is 49.75% higher than glucose (p〈0.01). With N^+ implantation (total dosage of 4.68×10^16 ions/cm^2 and energy of 20 keV) into dry liquorice seeds, both the bound water affinity to gaseous water and the bound water content of dry liquorice leaf can be significantly increased 30.24% (p 〈 0.01) and 36.51% (p 〈 0.01) respectively compared with the sham-irradiated seeds. Meanwhile, with these parameters chosen for N^+ implantation into dry liquorice seeds, the leaf polysaccharide content under water stress (ψw=-1.5 MPa) can increase significantly (p 〈 0.05) and the plant growth can also improve significantly (p 〈 0.05).展开更多
Sn-doped Ge2Sb2Te5 thin films deposited on Si(100)/SiO2 substrates by rf magnetron sputtering are investigated by a differential scanning calorimeter, x-ray diffraction and sheet resistance measurement. The crystall...Sn-doped Ge2Sb2Te5 thin films deposited on Si(100)/SiO2 substrates by rf magnetron sputtering are investigated by a differential scanning calorimeter, x-ray diffraction and sheet resistance measurement. The crystallization temperatures of the 3.58 at.%, 6.92 at.% and 10.04 at.% Sn-doped Ge2Sb2Te5 thin films have decreases of 5.3, 6.1 and 0.9℃, respectively, which is beneficial to reduce the switching current for the amorphous-to-crystalline phase transition. Due to Sn-doping, the sheet resistance of crystalline Ge2Sb2Te5 thin films increases about 2-10 times, which may be useful to reduce the switching current for the amorphous-to-crystalline phase change. In addition, an obvious decreasing dispersibility for the sheet resistance of Sn-doped Ge2Sb2Te5 thin films in the crystalline state has been observed, which can play an important role in minimizing resistance difference for the phase-change memory cell element arrays.展开更多
This paper reports that the nickel silicide ohmic contacts to n-type 6H-SiC have been fabricated. Transfer length method test patterns with NiSi/SiC and NiSi2/SiC structure axe formed on N-wells created by N^+ ion im...This paper reports that the nickel silicide ohmic contacts to n-type 6H-SiC have been fabricated. Transfer length method test patterns with NiSi/SiC and NiSi2/SiC structure axe formed on N-wells created by N^+ ion implantation into Si-faced p-type 6H-SiC epilayer respectively. NiSi and NiSi2 films are prepared by annealing the Ni and Si films separately deposited. A two-step annealing technology is performed for decreasing of oxidation problems occurred during high temperature processes. The specific contact resistance Pc of NiSi contact to n-type 6H-SiC as low as 1.78× 10^-6Ωcm^2 is achieved after a two-step annealing at 350 ℃for 20 min and 950℃ for 3 min in N2. And 3.84×10-6Ωcm^2 for NiSi2 contact is achieved. The result for sheet resistance Rsh of the N+ implanted layers is about 1210Ω/□. X-ray diffraction analysis shows the formation of nickel silicide phases at the metal/n-SiC interface after thermal annealing. The surfaces of the nickel silicide after thermal annealing are analysed by scanning electron microscope.展开更多
基金supported by National Natural Science Foundation of China(Nos.10505018,30800204)the Chinese Ministry of Agriculture(No.200803034)
文摘Mutagenesis and retrotransposons have a close relationship, but little attention has been paid yet to the activity of retrotransposons produced by physical mutagens. The variation of retrotransposon WIS 2-1A activity in wheat (Triticum aestivum L.) embryos at three different growth times (30 h, 45 h and 60 h) was investigated after they had been treated with N^+ implantation in a vacuum of 5× 10^-2 Pa and irradiation by ^60Coγ-ray respectively. For each of the three growth times the expression of WIS 2-1A showed almost entirely a same trend of downregulation, upregulation, then downregulation, and upregulation again with the increase in dose of N^+ implantation, but the expression appeared irregular with the increase in irradiation of ^60Coγ-ray. In conclusion, the acutely activating effect of WIS 2-1A stimulated by vacuum and high dose N^+ implantation within a shorter incubation time may provide a convenient tool to advance the research on mutagenic breeding and function genes.
基金supported by National Natural Science Foundation of China (No.10905044)Fundamental Research Funds for the Central Universities of China
文摘In this paper, surface modification of the strut dowel used in ITER PF support is reported. Different ions (nitrogen/titanium) with different doses are implanted into the surface of strut dowel. The result of Auger Electron Spectroscopy (AES) indicates that nitrogen can be implanted more deeply than titanium under the implantation condition of 60 kV accelerating voltage and a dose of 8×10^17/cm2 nitrogen. Surface Micro Hardness (SMH) and wear resistance are improved remarkably. Further SEM observation shows that there are no obvious scratches and damages after wear test.
文摘he present paper focuses on the modifying effects of ion beam mixing, ion im-planting and ion sputtering on hydrogen evolution electrodes. It was discovered thatthe four types of electrodes possessed excellent catalytic activity in acid or alkalinemedia and potential stability in long term electrolysis of water under high currentdensity. Their stability and applying life-span greatly surpass those of other elec-trodes activated by electrodepositing and other method. The effects of temperatureand roughness on function of electrodes were also examined. XPS and AES wereapplied to analyse the surface composition and bond states of the electrodes, andthe distribution of concentration varying with depth, and to explain the law of theexperiments .
基金supported by the Chinese National "863" Project of "Sand Treating Technology for Plant Improvement by Ion Beam Combined with New Material" (No. 2002AA327070)
文摘We have developed a large number of exocrine glands on liquorice leaves and facilitated polysaccharide secretion. Liquorice polysaccharide possesses stronger bound water affinity to gaseous water compared with sucrose and glucose. Our results show that the bound water affinity of liquorice polysaccharide to gaseous water is 49.75% higher than glucose (p〈0.01). With N^+ implantation (total dosage of 4.68×10^16 ions/cm^2 and energy of 20 keV) into dry liquorice seeds, both the bound water affinity to gaseous water and the bound water content of dry liquorice leaf can be significantly increased 30.24% (p 〈 0.01) and 36.51% (p 〈 0.01) respectively compared with the sham-irradiated seeds. Meanwhile, with these parameters chosen for N^+ implantation into dry liquorice seeds, the leaf polysaccharide content under water stress (ψw=-1.5 MPa) can increase significantly (p 〈 0.05) and the plant growth can also improve significantly (p 〈 0.05).
文摘Sn-doped Ge2Sb2Te5 thin films deposited on Si(100)/SiO2 substrates by rf magnetron sputtering are investigated by a differential scanning calorimeter, x-ray diffraction and sheet resistance measurement. The crystallization temperatures of the 3.58 at.%, 6.92 at.% and 10.04 at.% Sn-doped Ge2Sb2Te5 thin films have decreases of 5.3, 6.1 and 0.9℃, respectively, which is beneficial to reduce the switching current for the amorphous-to-crystalline phase transition. Due to Sn-doping, the sheet resistance of crystalline Ge2Sb2Te5 thin films increases about 2-10 times, which may be useful to reduce the switching current for the amorphous-to-crystalline phase change. In addition, an obvious decreasing dispersibility for the sheet resistance of Sn-doped Ge2Sb2Te5 thin films in the crystalline state has been observed, which can play an important role in minimizing resistance difference for the phase-change memory cell element arrays.
基金Project supported by the National Basic Research Program of China (Grant No 2002CB311904), the National Defense Basic Research Program of China (Grant No 51327010101) and the National Natural Science Foundation of China (Grant No 60376001).
文摘This paper reports that the nickel silicide ohmic contacts to n-type 6H-SiC have been fabricated. Transfer length method test patterns with NiSi/SiC and NiSi2/SiC structure axe formed on N-wells created by N^+ ion implantation into Si-faced p-type 6H-SiC epilayer respectively. NiSi and NiSi2 films are prepared by annealing the Ni and Si films separately deposited. A two-step annealing technology is performed for decreasing of oxidation problems occurred during high temperature processes. The specific contact resistance Pc of NiSi contact to n-type 6H-SiC as low as 1.78× 10^-6Ωcm^2 is achieved after a two-step annealing at 350 ℃for 20 min and 950℃ for 3 min in N2. And 3.84×10-6Ωcm^2 for NiSi2 contact is achieved. The result for sheet resistance Rsh of the N+ implanted layers is about 1210Ω/□. X-ray diffraction analysis shows the formation of nickel silicide phases at the metal/n-SiC interface after thermal annealing. The surfaces of the nickel silicide after thermal annealing are analysed by scanning electron microscope.