Nitric oxide (NO) is a novel type of neurotransmitter that is closely associated with synaptic plasticity, learning and memory. In the present study, we assessed the effects of Larginine and NnitroL arginine methyle...Nitric oxide (NO) is a novel type of neurotransmitter that is closely associated with synaptic plasticity, learning and memory. In the present study, we assessed the effects of Larginine and NnitroL arginine methylester (LNAME, a nitric oxide synthase inhibitor) on learning and memory. Rats were assigned to three groups receiving intracerebroventricular injections of LArg (the NO precursor), LNAME, or 0.9% NaCI (control), once daily for seven con secutive days. Twelve hours after the last injection, they underwent an electric shockpaired Y maze test. Twentyfour hours later, the rats' memory of the safe illuminated arm was tested. After that, the levels of NO and a7 nicotinic acetylcholine receptor (a7 nAChR) in the prefrontal cortex and hippocampus were assessed using an NO assay kit, and immunohistochemistry and Western blots, respectively. We found that, compared to controls, LArgtreated rats received fewer foot shocks and made fewer errors to reach the learning criterion, and made fewer errors during the memorytesting session. In contrast, LNAMEtreated rats received more foot shocks and made more errors than controls to reach the learning criterion, and made more errors during the memorytesting session. In parallel, NO content in the prefrontal cortex and hippocampus was higher in LArgtreated rats and lower inLNAME rats, compared to controls. Similarly, (]7 nAChR immunoreactivity and protein expression in the prefrontal cortex and hippocampus were higher in LArgtreated rats and lower in LNAME rats, compared to controls. These results suggest that the modulation of NO content in the brain correlates with a7 nAChR distribution and expression in the prefrontal cortex and hippocampus, as well as with learning and memory performance in the Ymaze.展开更多
To counteract/reveal celecoxib-induced toxicity and NO system involvement. METHODSCelecoxib (1 g/kg b.w. ip) was combined with therapy with stable gastric pentadecapeptide BPC 157 (known to inhibit these lesions, 10 ...To counteract/reveal celecoxib-induced toxicity and NO system involvement. METHODSCelecoxib (1 g/kg b.w. ip) was combined with therapy with stable gastric pentadecapeptide BPC 157 (known to inhibit these lesions, 10 μg/kg, 10 ng/kg, or 1 ng/kg ip) and L-arginine (100 mg/kg ip), as well as NOS blockade [N(G)-nitro-L-arginine methyl ester (L-NAME)] (5 mg/kg ip) given alone and/or combined immediately after celecoxib. Gastrointestinal, liver, and brain lesions and liver enzyme serum values in rats were assessed at 24 h and 48 h thereafter. RESULTSThis high-dose celecoxib administration, as a result of NO system dysfunction, led to gastric, liver, and brain lesions and increased liver enzyme serum values. The L-NAME-induced aggravation of the lesions was notable for gastric lesions, while in liver and brain lesions the beneficial effect of L-arginine was blunted. L-arginine counteracted gastric, liver and brain lesions. These findings support the NO system mechanism(s), both NO system agonization (L-arginine) and NO system antagonization (L-NAME), that on the whole are behind all of these COX phenomena. An even more complete antagonization was identified with BPC 157 (at both 24 h and 48 h). A beneficial effect was evident on all the increasingly negative effects of celecoxib and L-NAME application and in all the BPC 157 groups (L-arginine + BPC 157; L-NAME + BPC 157; L-NAME + L-arginine + BPC 157). Thus, these findings demonstrated that BPC 157 may equally counteract both COX-2 inhibition (counteracting the noxious effects of celecoxib on all lesions) and additional NOS blockade (equally counteracting the noxious effects of celecoxib + L-NAME). CONCLUSIONBPC 157 and L-arginine alleviate gastrointestinal, liver and brain lesions, redressing NSAIDs’ post-surgery application and NO system involvement.展开更多
Objective:To investigate the effect of alpha-lipoic acid(ALA)supplementation on systolic blood pressure(SBP),renal oxidant-antioxidant status and renal damage in spontaneously hypertensive rats(SHR)and SHR administere...Objective:To investigate the effect of alpha-lipoic acid(ALA)supplementation on systolic blood pressure(SBP),renal oxidant-antioxidant status and renal damage in spontaneously hypertensive rats(SHR)and SHR administered with Nω-nitro-L-arginine methyl ester(L-NAME).Methods:Male rats were divided into four groups(SHR,SHR+ALA,SHR+L-NAME,SHR+ALA+L-NAME).The respective group of rats was administered with ALA(100 mg/kg/day)from age 4 weeks to 28 weeks and L-NAME(25 mg/kg/day)from age 16 weeks to 28 weeks.SBP was measured every two weeks and twenty four hour urine was collected at 4 weeks,16 weeks and 28 weeks for estimation of protein,creatinine and N-acetyl-e end of 28 weeks,rats were sacrificed and blood and kidneys colα-Dglucosaminidase.At thlected for assessment of blood creatinine,kidney thiobarbituric acid reactive substances,protein carbonyls,superoxide dismutase,catalase,glutathione peroxidase,glutathione reductase,glutathione S-transferase,glutathione disulfide,glutathione,total antioxidant status and nitric oxide as well as histopathological examination.Results:ALA supplementation significantly reduced SBP of SHR and SHR+L-NAME rats when compared to their respective non-supplemented groups.Renal oxidant status markers including thiobarbituric acid reactive substances and protein carbonyls were significantly reduced on SHR and SHR+L-NAME rats supplemented with ALA at 28 weeks as well as ALA supplementation significantly increased renal antioxidants including superoxide dismutase,catalase,glutathione peroxidase,glutathione S-transferase,glutathione and glutathione/glutathione disulfide ratio at 28 weeks.No significant change in nitric oxide levels was observed between the ALA supplemented and non-supplemented groups.Renal dysfunction was ameliorated on ALA supplementation as evidenced by significant reduction in urine protein levels,N-acetyl-α-D-glucosaminidase activity and significant increase of creatinine clearance in SHR and SHR+L-NAME at 28 weeks.Renal histopathological examination showed that ALA supplementation prevented vascular damage in SHR and ameliorated glomerular damage in SHR+L-NAME at 28 weeks.Conclusions:ALA has hypotensive and renoprotective effects on both SHR and SHR+LNAME,which could be due to its ability to ameliorate oxidative stress in the kidneys.展开更多
基金supported by Undergraduate Innovational Experimentation Program of Shanxi Province, China (2009103)
文摘Nitric oxide (NO) is a novel type of neurotransmitter that is closely associated with synaptic plasticity, learning and memory. In the present study, we assessed the effects of Larginine and NnitroL arginine methylester (LNAME, a nitric oxide synthase inhibitor) on learning and memory. Rats were assigned to three groups receiving intracerebroventricular injections of LArg (the NO precursor), LNAME, or 0.9% NaCI (control), once daily for seven con secutive days. Twelve hours after the last injection, they underwent an electric shockpaired Y maze test. Twentyfour hours later, the rats' memory of the safe illuminated arm was tested. After that, the levels of NO and a7 nicotinic acetylcholine receptor (a7 nAChR) in the prefrontal cortex and hippocampus were assessed using an NO assay kit, and immunohistochemistry and Western blots, respectively. We found that, compared to controls, LArgtreated rats received fewer foot shocks and made fewer errors to reach the learning criterion, and made fewer errors during the memorytesting session. In contrast, LNAMEtreated rats received more foot shocks and made more errors than controls to reach the learning criterion, and made more errors during the memorytesting session. In parallel, NO content in the prefrontal cortex and hippocampus was higher in LArgtreated rats and lower inLNAME rats, compared to controls. Similarly, (]7 nAChR immunoreactivity and protein expression in the prefrontal cortex and hippocampus were higher in LArgtreated rats and lower in LNAME rats, compared to controls. These results suggest that the modulation of NO content in the brain correlates with a7 nAChR distribution and expression in the prefrontal cortex and hippocampus, as well as with learning and memory performance in the Ymaze.
文摘To counteract/reveal celecoxib-induced toxicity and NO system involvement. METHODSCelecoxib (1 g/kg b.w. ip) was combined with therapy with stable gastric pentadecapeptide BPC 157 (known to inhibit these lesions, 10 μg/kg, 10 ng/kg, or 1 ng/kg ip) and L-arginine (100 mg/kg ip), as well as NOS blockade [N(G)-nitro-L-arginine methyl ester (L-NAME)] (5 mg/kg ip) given alone and/or combined immediately after celecoxib. Gastrointestinal, liver, and brain lesions and liver enzyme serum values in rats were assessed at 24 h and 48 h thereafter. RESULTSThis high-dose celecoxib administration, as a result of NO system dysfunction, led to gastric, liver, and brain lesions and increased liver enzyme serum values. The L-NAME-induced aggravation of the lesions was notable for gastric lesions, while in liver and brain lesions the beneficial effect of L-arginine was blunted. L-arginine counteracted gastric, liver and brain lesions. These findings support the NO system mechanism(s), both NO system agonization (L-arginine) and NO system antagonization (L-NAME), that on the whole are behind all of these COX phenomena. An even more complete antagonization was identified with BPC 157 (at both 24 h and 48 h). A beneficial effect was evident on all the increasingly negative effects of celecoxib and L-NAME application and in all the BPC 157 groups (L-arginine + BPC 157; L-NAME + BPC 157; L-NAME + L-arginine + BPC 157). Thus, these findings demonstrated that BPC 157 may equally counteract both COX-2 inhibition (counteracting the noxious effects of celecoxib on all lesions) and additional NOS blockade (equally counteracting the noxious effects of celecoxib + L-NAME). CONCLUSIONBPC 157 and L-arginine alleviate gastrointestinal, liver and brain lesions, redressing NSAIDs’ post-surgery application and NO system involvement.
基金supported by Short Term Research Grant Scheme(304/PPSP/6131496)provided by Universiti Sains Malaysia.
文摘Objective:To investigate the effect of alpha-lipoic acid(ALA)supplementation on systolic blood pressure(SBP),renal oxidant-antioxidant status and renal damage in spontaneously hypertensive rats(SHR)and SHR administered with Nω-nitro-L-arginine methyl ester(L-NAME).Methods:Male rats were divided into four groups(SHR,SHR+ALA,SHR+L-NAME,SHR+ALA+L-NAME).The respective group of rats was administered with ALA(100 mg/kg/day)from age 4 weeks to 28 weeks and L-NAME(25 mg/kg/day)from age 16 weeks to 28 weeks.SBP was measured every two weeks and twenty four hour urine was collected at 4 weeks,16 weeks and 28 weeks for estimation of protein,creatinine and N-acetyl-e end of 28 weeks,rats were sacrificed and blood and kidneys colα-Dglucosaminidase.At thlected for assessment of blood creatinine,kidney thiobarbituric acid reactive substances,protein carbonyls,superoxide dismutase,catalase,glutathione peroxidase,glutathione reductase,glutathione S-transferase,glutathione disulfide,glutathione,total antioxidant status and nitric oxide as well as histopathological examination.Results:ALA supplementation significantly reduced SBP of SHR and SHR+L-NAME rats when compared to their respective non-supplemented groups.Renal oxidant status markers including thiobarbituric acid reactive substances and protein carbonyls were significantly reduced on SHR and SHR+L-NAME rats supplemented with ALA at 28 weeks as well as ALA supplementation significantly increased renal antioxidants including superoxide dismutase,catalase,glutathione peroxidase,glutathione S-transferase,glutathione and glutathione/glutathione disulfide ratio at 28 weeks.No significant change in nitric oxide levels was observed between the ALA supplemented and non-supplemented groups.Renal dysfunction was ameliorated on ALA supplementation as evidenced by significant reduction in urine protein levels,N-acetyl-α-D-glucosaminidase activity and significant increase of creatinine clearance in SHR and SHR+L-NAME at 28 weeks.Renal histopathological examination showed that ALA supplementation prevented vascular damage in SHR and ameliorated glomerular damage in SHR+L-NAME at 28 weeks.Conclusions:ALA has hypotensive and renoprotective effects on both SHR and SHR+LNAME,which could be due to its ability to ameliorate oxidative stress in the kidneys.