Diabetes-associated cognitive dysfunction has already been attracted considerable attention.Advanced glycation end products(AGEs)from daily diets are thought to be a vital contributor to the development of this diseas...Diabetes-associated cognitive dysfunction has already been attracted considerable attention.Advanced glycation end products(AGEs)from daily diets are thought to be a vital contributor to the development of this diseases.However,the effect of one of the best-characterized exogenous AGEs N^(ε)-(carboxymethyl)lysine(CML)on cognitive function is not fully reported.In the present study,diabetical Goto-Kakizaki(GK)rats were treated with free CML for 8-weeks.It was found that oral consumption of exogenous CML significantly aggravated diabetes-associated cognitive dysfunction in behavioral test.In details,exogenous CML increased levels of oxidative stress,promoted the activation of glial cells in the brain,up-regulated the release of inflammatory cytokines interleukin-6,inhibited the protein expression of the brain-derived neurotrophic factor and thus led to neuroinflammation.Furthermore,exogenous CML promoted the amyloidogenesis in the brain of GK rats,and inhibited the expression of GLUT4.Additionally,several tricarboxylic acid cycle and glutamate-glutamine/γ-aminobutyric acid cycle intermediates including pyruvate,succinic acid,glutamine,glutamate were significantly changed in brain of GK rats treated with exogenous free CML.In conclusion,exogenous free CML is a potentially noxious compounds led to aggravated diabetes-associated cognitive dysfunction which could be possibly explained by its effects on neuroinflammation,energy and neurotransmitter amino acid homeostasis.展开更多
BACKGROUND Myocardial remodeling is a key factor in the progression of cardiovascular disease to the end stage.In addition to myocardial infarction or stress overload,dietary factors have recently been considered asso...BACKGROUND Myocardial remodeling is a key factor in the progression of cardiovascular disease to the end stage.In addition to myocardial infarction or stress overload,dietary factors have recently been considered associated with myocardial remodeling.Nε-(carboxymethyl)lysine(CML)is a representative foodborne toxic product,which can be ingested via daily diet.Therefore,there is a marked need to explore the effects of dietary CML on the myocardium.AIM To explore the effects of dietary CML(dCML)on the heart.METHODS C57 BL/6 mice were divided into a control group and a dCML group.The control group and the dCML group were respectively fed a normal diet or diet supplemented with CML for 20 wk.Body weight and blood glucose were recorded every 4 wk.^(18)F-fluorodeoxyglucose(FDG)was used to trace the glucose uptake in mouse myocardium,followed by visualizing with micro-positron emission tomography(PET).Myocardial remodeling and glucose metabolism were also detected.In vitro,H9C2 cardiomyocytes were added to exogenous CML and cultured for 24 h.The effects of exogenous CML on glucose metabolism,collagen I expression,hypertrophy,and apoptosis of cardiomyocytes were analyzed.RESULTS Our results suggest that the levels of fasting blood glucose,fasting insulin,and serum CML were significantly increased after 20 wk of dCML.Micro-PET showed that ^(18)F-FDG accumulated more in the myocardium of the dCML group than in the control group.Histological staining revealed that dCML could lead to myocardial fibrosis and hypertrophy.The indexes of myocardial fibrosis,apoptosis,and hypertrophy were also increased in the dCML group,whereas the activities of glucose metabolism-related pathways and citrate synthase(CS)were significantly inhibited.In cardiomyocytes,collagen I expression and cellular size were significantly increased after the addition of exogenous CML.CML significantly promoted cellular hypertrophy and apoptosis,while pathways involved in glucose metabolism and level of Cs mRNA were significantly inhibited.CONCLUSION This study reveals that dCML alters myocardial glucose metabolism and promotes myocardial remodeling.展开更多
BACKGROUND Advanced glycation end products(AGEs)are diabetic metabolic toxic products that cannot be ignored.Nε-(carboxymethyl)lysine(CML),a component of AGEs,could increase macrophage lipid uptake,promote foam cell ...BACKGROUND Advanced glycation end products(AGEs)are diabetic metabolic toxic products that cannot be ignored.Nε-(carboxymethyl)lysine(CML),a component of AGEs,could increase macrophage lipid uptake,promote foam cell formation,and thereby accelerate atherosclerosis.The receptor for AGEs(RAGE)and cluster of differentiation 36(CD36)were the receptors of CML.However,it is still unknown whether RAGE and CD36 play key roles in CML-promoted lipid uptake.AIM Our study aimed to explore the role of RAGE and CD36 in CML-induced macrophage lipid uptake.METHODS In this study,we examined the effect of CML on lipid uptake by Raw264.7 macrophages.After adding 10 mmol/L CML,the lipid accumulation in macrophages was confirmed by oil red O staining.Expression changes of CD36 and RAGE were detected with immunoblotting and quantitative real-time polymerase chain reaction.The interaction between CML with CD36 and RAGE was verified by immunoprecipitation.We synthesized a novel N-succinimidyl-4-18Ffluorobenzoate-CML radioactive probe.Radioactive receptor-ligand binding assays were performed to test the binding affinity between CML with CD36 and RAGE.The effects of blocking CD36 or RAGE on CML-promoting lipid uptake were also detected.RESULTS The study revealed that CML significantly promoted lipid uptake by macrophages.Immunoprecipitation and radioactive receptor-ligand binding assays indicated that CML could specifically bind to both CD36 and RAGE.CML had a higher affinity for CD36 than RAGE.ARG82,ASN71,and THR70 were the potential interacting amino acids that CD36 binds to CML Anti-CD36 and anti-RAGE could block the uptake of CML by macrophages.The lipid uptake promotion effect of CML was significantly attenuated after blocking CD36 or RAGE.CONCLUSION Our results suggest that the binding of CML with CD36 and RAGE promotes macrophage lipid uptake.展开更多
晚期糖基化终末产物(advanced glycosylation end products,AGEs)是糖酮或醛基与蛋白、脂质、氨基酸的自由氨基经不可逆反应所形成的物质,是非酶糖基化反应的最终产物。研究发现在动脉硬化、心肌舒张异常及内皮功能紊乱等心血管疾病中...晚期糖基化终末产物(advanced glycosylation end products,AGEs)是糖酮或醛基与蛋白、脂质、氨基酸的自由氨基经不可逆反应所形成的物质,是非酶糖基化反应的最终产物。研究发现在动脉硬化、心肌舒张异常及内皮功能紊乱等心血管疾病中都出现AGEs水平的增加,并且抑制AGEs的产生或作用具有心血管保护作用。因此,AGEs可以作为防治心血管疾病的一个潜在靶点。本文重点综述了AGEs的来源、心血管损伤机制及防治策略。展开更多
基金supported by the National Natural Science Foundation of China(32302258,32172317)Changsha Municipal Natural Science Foundation(kq2202223).
文摘Diabetes-associated cognitive dysfunction has already been attracted considerable attention.Advanced glycation end products(AGEs)from daily diets are thought to be a vital contributor to the development of this diseases.However,the effect of one of the best-characterized exogenous AGEs N^(ε)-(carboxymethyl)lysine(CML)on cognitive function is not fully reported.In the present study,diabetical Goto-Kakizaki(GK)rats were treated with free CML for 8-weeks.It was found that oral consumption of exogenous CML significantly aggravated diabetes-associated cognitive dysfunction in behavioral test.In details,exogenous CML increased levels of oxidative stress,promoted the activation of glial cells in the brain,up-regulated the release of inflammatory cytokines interleukin-6,inhibited the protein expression of the brain-derived neurotrophic factor and thus led to neuroinflammation.Furthermore,exogenous CML promoted the amyloidogenesis in the brain of GK rats,and inhibited the expression of GLUT4.Additionally,several tricarboxylic acid cycle and glutamate-glutamine/γ-aminobutyric acid cycle intermediates including pyruvate,succinic acid,glutamine,glutamate were significantly changed in brain of GK rats treated with exogenous free CML.In conclusion,exogenous free CML is a potentially noxious compounds led to aggravated diabetes-associated cognitive dysfunction which could be possibly explained by its effects on neuroinflammation,energy and neurotransmitter amino acid homeostasis.
基金Supported by the National Natural Science Foundation of China,No.82070455Natural Science Foundation of Jiangsu Province,No.BK20201225+1 种基金Medical Innovation Team Project of Jiangsu Province,No.CXTDA2017010Research and Innovation Funding Project for College Students in Experimental Animal Center of Jiangsu University。
文摘BACKGROUND Myocardial remodeling is a key factor in the progression of cardiovascular disease to the end stage.In addition to myocardial infarction or stress overload,dietary factors have recently been considered associated with myocardial remodeling.Nε-(carboxymethyl)lysine(CML)is a representative foodborne toxic product,which can be ingested via daily diet.Therefore,there is a marked need to explore the effects of dietary CML on the myocardium.AIM To explore the effects of dietary CML(dCML)on the heart.METHODS C57 BL/6 mice were divided into a control group and a dCML group.The control group and the dCML group were respectively fed a normal diet or diet supplemented with CML for 20 wk.Body weight and blood glucose were recorded every 4 wk.^(18)F-fluorodeoxyglucose(FDG)was used to trace the glucose uptake in mouse myocardium,followed by visualizing with micro-positron emission tomography(PET).Myocardial remodeling and glucose metabolism were also detected.In vitro,H9C2 cardiomyocytes were added to exogenous CML and cultured for 24 h.The effects of exogenous CML on glucose metabolism,collagen I expression,hypertrophy,and apoptosis of cardiomyocytes were analyzed.RESULTS Our results suggest that the levels of fasting blood glucose,fasting insulin,and serum CML were significantly increased after 20 wk of dCML.Micro-PET showed that ^(18)F-FDG accumulated more in the myocardium of the dCML group than in the control group.Histological staining revealed that dCML could lead to myocardial fibrosis and hypertrophy.The indexes of myocardial fibrosis,apoptosis,and hypertrophy were also increased in the dCML group,whereas the activities of glucose metabolism-related pathways and citrate synthase(CS)were significantly inhibited.In cardiomyocytes,collagen I expression and cellular size were significantly increased after the addition of exogenous CML.CML significantly promoted cellular hypertrophy and apoptosis,while pathways involved in glucose metabolism and level of Cs mRNA were significantly inhibited.CONCLUSION This study reveals that dCML alters myocardial glucose metabolism and promotes myocardial remodeling.
基金Supported by The National Natural Science Foundation of China,No.82070455Natural Science Foundation of Jiangsu Province,No.BK20201225Medical Innovation Team Project of Jiangsu Province,No.CXTDA2017010。
文摘BACKGROUND Advanced glycation end products(AGEs)are diabetic metabolic toxic products that cannot be ignored.Nε-(carboxymethyl)lysine(CML),a component of AGEs,could increase macrophage lipid uptake,promote foam cell formation,and thereby accelerate atherosclerosis.The receptor for AGEs(RAGE)and cluster of differentiation 36(CD36)were the receptors of CML.However,it is still unknown whether RAGE and CD36 play key roles in CML-promoted lipid uptake.AIM Our study aimed to explore the role of RAGE and CD36 in CML-induced macrophage lipid uptake.METHODS In this study,we examined the effect of CML on lipid uptake by Raw264.7 macrophages.After adding 10 mmol/L CML,the lipid accumulation in macrophages was confirmed by oil red O staining.Expression changes of CD36 and RAGE were detected with immunoblotting and quantitative real-time polymerase chain reaction.The interaction between CML with CD36 and RAGE was verified by immunoprecipitation.We synthesized a novel N-succinimidyl-4-18Ffluorobenzoate-CML radioactive probe.Radioactive receptor-ligand binding assays were performed to test the binding affinity between CML with CD36 and RAGE.The effects of blocking CD36 or RAGE on CML-promoting lipid uptake were also detected.RESULTS The study revealed that CML significantly promoted lipid uptake by macrophages.Immunoprecipitation and radioactive receptor-ligand binding assays indicated that CML could specifically bind to both CD36 and RAGE.CML had a higher affinity for CD36 than RAGE.ARG82,ASN71,and THR70 were the potential interacting amino acids that CD36 binds to CML Anti-CD36 and anti-RAGE could block the uptake of CML by macrophages.The lipid uptake promotion effect of CML was significantly attenuated after blocking CD36 or RAGE.CONCLUSION Our results suggest that the binding of CML with CD36 and RAGE promotes macrophage lipid uptake.
文摘晚期糖基化终末产物(advanced glycosylation end products,AGEs)是糖酮或醛基与蛋白、脂质、氨基酸的自由氨基经不可逆反应所形成的物质,是非酶糖基化反应的最终产物。研究发现在动脉硬化、心肌舒张异常及内皮功能紊乱等心血管疾病中都出现AGEs水平的增加,并且抑制AGEs的产生或作用具有心血管保护作用。因此,AGEs可以作为防治心血管疾病的一个潜在靶点。本文重点综述了AGEs的来源、心血管损伤机制及防治策略。