Objective The Yanshan Fold Belt is located within the northern margin of the North China platform and contains welldeveloped and widespread Neoproterozoic and Mesoproterozoic sedimentary units with a total thickness o...Objective The Yanshan Fold Belt is located within the northern margin of the North China platform and contains welldeveloped and widespread Neoproterozoic and Mesoproterozoic sedimentary units with a total thickness of up to 9000 m.Previous studies identified many oil seedlings as well as asphalt and ancient hydrocarbon reservoirs in Northern Hebei depression and western Liaoning depression.This research indicates that the Mesoproterozoic and Neoproterozoic sedimentary units are ideally suited for the formation of significant oil and gas resources.The Niu D1 well was drilled by the China Geological Survey(CGS)in the Niuyingzi area and intercepted oil immersions and oil-and gas-bearing units within a limestone reservoir in the middle Proterozoic Gaoyuzhuang Formation(Fig.1).This study presents new biomarker compound and carbon isotope data that indicate that the oil within this formation was derived from hydrocarbon source rocks of the Hongshuizhuang Formation,part of the Mesoproterozoic Jixian Series,and the reservoir type is overthrust fault fractured anticline hydrocarbon reservoir.The oil reservoir within the Gaoyuzhuang Formation limestone might represent the oldest oil reservoir discovered to date within the Yanliao faulted depression zone.展开更多
In this paper, a t/(t+1)-diagnosable system is studied, which can locate a set S with |S|≤t+1 containing all faulty units only if the system has at most t faulty units. On the basis of the characterization of the t/(...In this paper, a t/(t+1)-diagnosable system is studied, which can locate a set S with |S|≤t+1 containing all faulty units only if the system has at most t faulty units. On the basis of the characterization of the t/(t+1)-diagnosable system, a necessary and sufficient condition is presented to judge whether a system is t/(t+1)-diagnosable. Meanwhile, this paper exposes some new and important properties of the t/(t+1)-diagnosable system to present the t/(t+1)-diagnosability of some networks. Furthermore, the following results for the t/(t+1)-diagnosability of some special networks are obtained: a hypercube network of n -dimensions is (3n-5)/(3n-4)-diagnosable, a star network of n -dimensions is (3n-5)/(3n-4)-diagnosable (n≥5) and a 2D-mesh (3D-mesh) with n 2(n 3) units is 8/9-diagnosable (11/12-diagnosable). This paper shows that in general, the t/(t+1)-diagnosability of a system is not only larger than its t/t -diagnosability , but also its classic diagnosability, specially the t/(t+1)-diagnosability of the hypercube network of n -dimensions is about 3 times as large as its classic t -diagnosability and about 1.5 times as large as its t/t -diagnosability.展开更多
This paper proposes an L_(1)adaptive fault tolerant control method for trajectory tracking of tail-sitter aircraft in the state of motor loss fault.The tail-sitter model considers the uncertainties produced by the fea...This paper proposes an L_(1)adaptive fault tolerant control method for trajectory tracking of tail-sitter aircraft in the state of motor loss fault.The tail-sitter model considers the uncertainties produced by the features of nonlinearities and couplings which cause difficulties in control.An L_(1)adaptive controller is designed to reduce the position and attitude error when actuators have faults.A reference trajectory containing large maneuver flight transitions is designed,which makes it even harder for the L_(1)controller to track accurately.Compensators are designed to assist L_(1)adaptive controller tracking of the reference trajectory.The stability of the L_(1)adaptive controller including compensators is proved.Finally,the simulation results are used to analyse the effectiveness of the proposed controller.Compared to the H∞controller,the L_(1)adaptive controller with compensators has better performance in position control and attitude control under fault tolerance state even when the aircraft conducts large maneuver.Besides,as the L_(1)adaptive control method separates feedback control and adaptive law design,the response speed of the whole system is improved.展开更多
I_(1)stacking faults(SFs)in Mg alloys are regarded as the nucleation sites of<c+a>dislocations that are critical for these alloys to achieve high ductility.Previously it was proposed that the formation of I_(1)S...I_(1)stacking faults(SFs)in Mg alloys are regarded as the nucleation sites of<c+a>dislocations that are critical for these alloys to achieve high ductility.Previously it was proposed that the formation of I_(1)SFs requires the accumulations of a large number of vacancies,which are difficult to achieve at low temperatures.In this study,molecular dynamics(MD)and molecular statics(MS)simulations based on empirical interatomic potentials were applied to investigate the deformation defect evolutions from the symmetric tilt grain boundaries(GBs)in Mg and Mg-Y alloys under external loading along<c>-axis.The results show the planar faults(PFs)on Pyramidal I planes first appear due to the nucleation and glide of(1/2 c+p)partial dislocations from GBs,where p=1/3(1010).These partial dislocations with pyramidal PFs interact with other defects,including pyramidal PFs themselves,GBs,and ppartial dislocations,generating a large amount of I_(1)SFs.Detailed analyses show the nucleation and growth of I_(1)SFs are achieved by atomic shuffle events and deformation defect reactions without the requirements of vacancy diffusion.Our simulations also suggest the Y clusters at GBs can reduce the critical stress for the formation of pyramidal PFs and I_(1)SFs,which provide a possible reason for the experimental observations that Y promotes the<c+a>dislocation activities.展开更多
In the past two decades,because of the significant increase in the availability of differential interferometry from synthetic aperture radar and GPS data,spaceborne geodesy has been widely employed to determine the co...In the past two decades,because of the significant increase in the availability of differential interferometry from synthetic aperture radar and GPS data,spaceborne geodesy has been widely employed to determine the co-seismic displacement field of earthquakes.On April 18,2021,a moderate earthquake(Mw 5.8)occurred east of Bandar Ganaveh,southern Iran,followed by intensive seismic activity and aftershocks of various magnitudes.We use two-pass D-InSAR and Small Baseline Inversion techniques via the LiCSBAS suite to study the coseismic displacement and monitor the four-month post-seismic deformation of the Bandar Ganaveh earthquake,as well as constrain the fault geometry of the co-seismic faulting mechanism during the seismic sequence.Analyses show that the co-and postseismic deformation are distributed in relatively shallow depths along with an NW-SE striking and NE dipping complex reverse/thrust fault branches of the Zagros Mountain Front Fault,complying with the main trend of the Zagros structures.The average cumulative displacements were obtained from-137.5 to+113.3 mm/yr in the SW and NE blocks of the Mountain Front Fault,respectively.The received maximum uplift amount is approximately consistent with the overall orogen-normal shortening component of the Arabian-Eurasian convergence in the Zagros region.No surface ruptures were associated with the seismic source;therefore,we propose a shallow blind thrust/reverse fault(depth~10 km)connected to the deeper basal decollement fault within a complex tectonic zone,emphasizing the thin-skinned tectonics.展开更多
Integrated with sensors,processors,and radio frequency(RF)communication modules,intelligent bearing could achieve the autonomous perception and autonomous decision-making,guarantying the safety and reliability during ...Integrated with sensors,processors,and radio frequency(RF)communication modules,intelligent bearing could achieve the autonomous perception and autonomous decision-making,guarantying the safety and reliability during their use.However,because of the resource limitations of the end device,processors in the intelligent bearing are unable to carry the computational load of deep learning models like convolutional neural network(CNN),which involves a great amount of multiplicative operations.To minimize the computation cost of the conventional CNN,based on the idea of AdderNet,a 1-D adder neural network with a wide first-layer kernel(WAddNN)suitable for bearing fault diagnosis is proposed in this paper.The proposed method uses the l1-norm distance between filters and input features as the output response,thus making the whole network almost free of multiplicative operations.The whole model takes the original signal as the input,uses a wide kernel in the first adder layer to extract features and suppress the high frequency noise,and then uses two layers of small kernels for nonlinear mapping.Through experimental comparison with CNN models of the same structure,WAddNN is able to achieve a similar accuracy as CNN models with significantly reduced computational cost.The proposed model provides a new fault diagnosis method for intelligent bearings with limited resources.展开更多
基金funded by the China Geological Survey Project(Grant No.DD20190098).
文摘Objective The Yanshan Fold Belt is located within the northern margin of the North China platform and contains welldeveloped and widespread Neoproterozoic and Mesoproterozoic sedimentary units with a total thickness of up to 9000 m.Previous studies identified many oil seedlings as well as asphalt and ancient hydrocarbon reservoirs in Northern Hebei depression and western Liaoning depression.This research indicates that the Mesoproterozoic and Neoproterozoic sedimentary units are ideally suited for the formation of significant oil and gas resources.The Niu D1 well was drilled by the China Geological Survey(CGS)in the Niuyingzi area and intercepted oil immersions and oil-and gas-bearing units within a limestone reservoir in the middle Proterozoic Gaoyuzhuang Formation(Fig.1).This study presents new biomarker compound and carbon isotope data that indicate that the oil within this formation was derived from hydrocarbon source rocks of the Hongshuizhuang Formation,part of the Mesoproterozoic Jixian Series,and the reservoir type is overthrust fault fractured anticline hydrocarbon reservoir.The oil reservoir within the Gaoyuzhuang Formation limestone might represent the oldest oil reservoir discovered to date within the Yanliao faulted depression zone.
基金Supported by the National Natural Science Foundation of China(No.61862003,61761006)the Natural Science Foundation of Guangxi of China(No.2018GXNSFDA281052)
文摘In this paper, a t/(t+1)-diagnosable system is studied, which can locate a set S with |S|≤t+1 containing all faulty units only if the system has at most t faulty units. On the basis of the characterization of the t/(t+1)-diagnosable system, a necessary and sufficient condition is presented to judge whether a system is t/(t+1)-diagnosable. Meanwhile, this paper exposes some new and important properties of the t/(t+1)-diagnosable system to present the t/(t+1)-diagnosability of some networks. Furthermore, the following results for the t/(t+1)-diagnosability of some special networks are obtained: a hypercube network of n -dimensions is (3n-5)/(3n-4)-diagnosable, a star network of n -dimensions is (3n-5)/(3n-4)-diagnosable (n≥5) and a 2D-mesh (3D-mesh) with n 2(n 3) units is 8/9-diagnosable (11/12-diagnosable). This paper shows that in general, the t/(t+1)-diagnosability of a system is not only larger than its t/t -diagnosability , but also its classic diagnosability, specially the t/(t+1)-diagnosability of the hypercube network of n -dimensions is about 3 times as large as its classic t -diagnosability and about 1.5 times as large as its t/t -diagnosability.
基金supported by the National Natural Science Foundation of China(61873012)。
文摘This paper proposes an L_(1)adaptive fault tolerant control method for trajectory tracking of tail-sitter aircraft in the state of motor loss fault.The tail-sitter model considers the uncertainties produced by the features of nonlinearities and couplings which cause difficulties in control.An L_(1)adaptive controller is designed to reduce the position and attitude error when actuators have faults.A reference trajectory containing large maneuver flight transitions is designed,which makes it even harder for the L_(1)controller to track accurately.Compensators are designed to assist L_(1)adaptive controller tracking of the reference trajectory.The stability of the L_(1)adaptive controller including compensators is proved.Finally,the simulation results are used to analyse the effectiveness of the proposed controller.Compared to the H∞controller,the L_(1)adaptive controller with compensators has better performance in position control and attitude control under fault tolerance state even when the aircraft conducts large maneuver.Besides,as the L_(1)adaptive control method separates feedback control and adaptive law design,the response speed of the whole system is improved.
基金supported by the U.S.Department of Energy,Office of Basic Energy Sciences,Division of Materials Sciences and Engineering under Award DE-SC0008637 as part of the Center for PRedictive Integrated Structural Materials Science(PRISMS Center)at University of Michigan。
文摘I_(1)stacking faults(SFs)in Mg alloys are regarded as the nucleation sites of<c+a>dislocations that are critical for these alloys to achieve high ductility.Previously it was proposed that the formation of I_(1)SFs requires the accumulations of a large number of vacancies,which are difficult to achieve at low temperatures.In this study,molecular dynamics(MD)and molecular statics(MS)simulations based on empirical interatomic potentials were applied to investigate the deformation defect evolutions from the symmetric tilt grain boundaries(GBs)in Mg and Mg-Y alloys under external loading along<c>-axis.The results show the planar faults(PFs)on Pyramidal I planes first appear due to the nucleation and glide of(1/2 c+p)partial dislocations from GBs,where p=1/3(1010).These partial dislocations with pyramidal PFs interact with other defects,including pyramidal PFs themselves,GBs,and ppartial dislocations,generating a large amount of I_(1)SFs.Detailed analyses show the nucleation and growth of I_(1)SFs are achieved by atomic shuffle events and deformation defect reactions without the requirements of vacancy diffusion.Our simulations also suggest the Y clusters at GBs can reduce the critical stress for the formation of pyramidal PFs and I_(1)SFs,which provide a possible reason for the experimental observations that Y promotes the<c+a>dislocation activities.
文摘In the past two decades,because of the significant increase in the availability of differential interferometry from synthetic aperture radar and GPS data,spaceborne geodesy has been widely employed to determine the co-seismic displacement field of earthquakes.On April 18,2021,a moderate earthquake(Mw 5.8)occurred east of Bandar Ganaveh,southern Iran,followed by intensive seismic activity and aftershocks of various magnitudes.We use two-pass D-InSAR and Small Baseline Inversion techniques via the LiCSBAS suite to study the coseismic displacement and monitor the four-month post-seismic deformation of the Bandar Ganaveh earthquake,as well as constrain the fault geometry of the co-seismic faulting mechanism during the seismic sequence.Analyses show that the co-and postseismic deformation are distributed in relatively shallow depths along with an NW-SE striking and NE dipping complex reverse/thrust fault branches of the Zagros Mountain Front Fault,complying with the main trend of the Zagros structures.The average cumulative displacements were obtained from-137.5 to+113.3 mm/yr in the SW and NE blocks of the Mountain Front Fault,respectively.The received maximum uplift amount is approximately consistent with the overall orogen-normal shortening component of the Arabian-Eurasian convergence in the Zagros region.No surface ruptures were associated with the seismic source;therefore,we propose a shallow blind thrust/reverse fault(depth~10 km)connected to the deeper basal decollement fault within a complex tectonic zone,emphasizing the thin-skinned tectonics.
基金support provided by the China National Key Research and Development Program of China under Grant 2019YFB2004300the National Natural Science Foundation of China under Grant 51975065 and 51805051.
文摘Integrated with sensors,processors,and radio frequency(RF)communication modules,intelligent bearing could achieve the autonomous perception and autonomous decision-making,guarantying the safety and reliability during their use.However,because of the resource limitations of the end device,processors in the intelligent bearing are unable to carry the computational load of deep learning models like convolutional neural network(CNN),which involves a great amount of multiplicative operations.To minimize the computation cost of the conventional CNN,based on the idea of AdderNet,a 1-D adder neural network with a wide first-layer kernel(WAddNN)suitable for bearing fault diagnosis is proposed in this paper.The proposed method uses the l1-norm distance between filters and input features as the output response,thus making the whole network almost free of multiplicative operations.The whole model takes the original signal as the input,uses a wide kernel in the first adder layer to extract features and suppress the high frequency noise,and then uses two layers of small kernels for nonlinear mapping.Through experimental comparison with CNN models of the same structure,WAddNN is able to achieve a similar accuracy as CNN models with significantly reduced computational cost.The proposed model provides a new fault diagnosis method for intelligent bearings with limited resources.