Copolymerization of styrene (St) with N-phenylmaleimide (NPMI) was studied with rare earth coordination catalyst Nd(naph)3-AlEt3 in toluene. Characterization of the copolymers showed that the copolymers possess an al...Copolymerization of styrene (St) with N-phenylmaleimide (NPMI) was studied with rare earth coordination catalyst Nd(naph)3-AlEt3 in toluene. Characterization of the copolymers showed that the copolymers possess an alternating structure.展开更多
Radical copolymerization of N-phenylmaleedde with cyclohexene was carried out with 2, 2' -azobisisobutyronitrile in various solvents at 60℃. The copolymer was characterized by IR and 1H-NMR
The emulsion polymerization of N-phenylmaleimide, Styrene and acrylonitrile was studied. The thermal property of this copolymer was measures by dynamic thermomechanical analysis(DMA). The mechanical properties, such a...The emulsion polymerization of N-phenylmaleimide, Styrene and acrylonitrile was studied. The thermal property of this copolymer was measures by dynamic thermomechanical analysis(DMA). The mechanical properties, such as tensile strength, hardness and fie-cural Strength were StUdied experimentally. The results indicated that not only the monomer component but also the polymerization technologies have effect on the properties of the copolymer. The optimum monomer content and suitable polymerization method were obtained.展开更多
Polyarylether dendrons as macroinitiators for the “living”/controlled free radical copolymerization of N-phenylmaleimide (PhMI) and styrene (St) have been demonstrated. The copolymerization was carried out in bulk o...Polyarylether dendrons as macroinitiators for the “living”/controlled free radical copolymerization of N-phenylmaleimide (PhMI) and styrene (St) have been demonstrated. The copolymerization was carried out in bulk or anisole with CuBr/bipy catalyst at 100–130°C. It is found that the resulting copolymers possess predetermined molecular weights and narrower polydispersities (1.18 M w/M n 1.32). The effects of reaction temperature and monomer feed on the copolymerization kinetics were investigated in detail. By using the Fineman-Ross method, the apparent monomer reactivity ratios for the atom transfer radical copolymerization of PhMI and St were determined to be r PhMI = 0.0207, and r St = 0.0484, respectively.展开更多
基金This project was supported by the National Natural Science Foundation of China. (No.29974024,20254001)
文摘Copolymerization of styrene (St) with N-phenylmaleimide (NPMI) was studied with rare earth coordination catalyst Nd(naph)3-AlEt3 in toluene. Characterization of the copolymers showed that the copolymers possess an alternating structure.
文摘Radical copolymerization of N-phenylmaleedde with cyclohexene was carried out with 2, 2' -azobisisobutyronitrile in various solvents at 60℃. The copolymer was characterized by IR and 1H-NMR
文摘The emulsion polymerization of N-phenylmaleimide, Styrene and acrylonitrile was studied. The thermal property of this copolymer was measures by dynamic thermomechanical analysis(DMA). The mechanical properties, such as tensile strength, hardness and fie-cural Strength were StUdied experimentally. The results indicated that not only the monomer component but also the polymerization technologies have effect on the properties of the copolymer. The optimum monomer content and suitable polymerization method were obtained.
文摘Polyarylether dendrons as macroinitiators for the “living”/controlled free radical copolymerization of N-phenylmaleimide (PhMI) and styrene (St) have been demonstrated. The copolymerization was carried out in bulk or anisole with CuBr/bipy catalyst at 100–130°C. It is found that the resulting copolymers possess predetermined molecular weights and narrower polydispersities (1.18 M w/M n 1.32). The effects of reaction temperature and monomer feed on the copolymerization kinetics were investigated in detail. By using the Fineman-Ross method, the apparent monomer reactivity ratios for the atom transfer radical copolymerization of PhMI and St were determined to be r PhMI = 0.0207, and r St = 0.0484, respectively.