Background Salmonella Typhimurium challenge causes a huge detriment to chicken production.N-acyl homoserine lactonase(AHLase),a quorum quenching enzyme,potentially inhibits the growth and virulence of Gram-negative ba...Background Salmonella Typhimurium challenge causes a huge detriment to chicken production.N-acyl homoserine lactonase(AHLase),a quorum quenching enzyme,potentially inhibits the growth and virulence of Gram-negative bacteria.However,it is unknown whether AHLase can protect chickens against S.Typhimurium challenge.This study aimed to evaluate the effects of AHLase on growth performance and intestinal health in broilers challenged by S.Typhimurium.A total of 240 one-day-old female crossbred broilers(817C)were randomly divided into 5 groups(6 replicates/group):negative control(NC),positive control(PC),and PC group supplemented with 5,10 or 20 U/g AHLase.All birds except those in NC were challenged with S.Typhimurium from 7 to 9 days of age.All parameters related to growth and intestinal health were determined on d 10 and 14.Results The reductions(P<0.05)in body weight(BW)and average daily gain(ADG)in challenged birds were alleviated by AHLase addition especially at 10 U/g.Thus,samples from NC,PC and PC plus 10 U/g AHLase group were selected for further analysis.S.Typhimurium challenge impaired(P<0.05)intestinal morphology,elevated(P<0.05)ileal inflammatory cytokines(IL-1βand IL-8)expression,and increased(P<0.05)serum diamine oxidase(DAO)activity on d 10.However,AHLase addition normalized these changes.Gut microbiota analysis on d 10 showed that AHLase reversed the reductions(P<0.05)in several beneficial bacteria(e.g.Bacilli,Bacillales and Lactobacillales),along with increases(P<0.05)in certain harmful bacteria(e.g.Proteobacteria,Gammaproteobacteria,Enterobacteriaceae and Escherichia/Shigel a)in PC group.Furthermore,AHLase-induced increased beneficial bacteria and decreased harmful bacteria were basically negatively correlated(P<0.05)with the reductions of ileal IL-1βand IL-8 expression and serum DAO activity,but positively correlated(P<0.05)with the increased BW and ADG.Functional prediction revealed that AHLase abolished S.Typhimurium-induced upregulations(P<0.05)of certain pathogenicity-related pathways such as lipopolysaccharide biosynthesis,shigellosis,bacterial invasion of epithelial cells and pathogenic Escherichia coli infection of gut microbiota.Conclusions Supplemental AHLase attenuated S.Typhimurium-induced growth retardation and intestinal disruption in broilers,which could be associated with the observed recovery of gut microbiota dysbiosis.展开更多
This study aimed to investigate the potential mitigating effects of N-acyl homoserine lactonase(AHLase)on the virulence of Salmonella typhimurium and its induction of intestinal damages in broilers.In vitro study was ...This study aimed to investigate the potential mitigating effects of N-acyl homoserine lactonase(AHLase)on the virulence of Salmonella typhimurium and its induction of intestinal damages in broilers.In vitro study was firstly conducted to examine if AHLase treatment could attenuate the virulence of S.typhimurium.Then,an in vivo experiment was performed by allocating 240 broiler chicks at 1 d old into 3 groups(8 replicates per group):negative control(NC),positive control(PC),and PC supplemented with 10,000 U/kg AHLase.All chicks except those in NC were orally challenged by S.typhimurium from 8to 10 d of age.Parameters were measured on d 11 and 21.The results showed that treatment with 1 U/mL AHLase suppressed the biofilm-forming ability(including biofilm biomass,extracellular DNA secretion and biofilm formation-related gene expression),together with swarming motility and adhesive capacity of S.typhimurium.Supplemental 10,000 U/kg AHLase counteracted S.typhimurium-induced impairments(P<0.05)in broiler growth performance(including final body weight,average daily gain and average daily feed intake)during either 1-11 d or 12-21 d,and increases(P<0.05)in the indexes of liver,spleen and bursa of Fabricius on d 11,together with reductions(P<0.05)in ileal villus height and its ratio to crypt depth on both d 11 and 21.AHLase addition also normalized the increased(P<0.05)m RNA expression of ileal occludin on both d 11 and 21 in S.typhimurium-challenged broilers.However,neither S.typhimurium challenge nor AHLase addition altered(P>0.05)serum diamine oxidase activity of broilers.Noticeably,S.typhimurium challenge caused little change in the mRNA expression of ileal inflammatory cytokines except for an increase(P<0.05)in interleukin-8 expression on d 11,whereas AHLase addition normalized(P<0.05)this change.In conclusion,AHLase treatment could attenuate the virulence and pathogenicity of S.typhimurium,thus contributing to alleviate S.typhimurium-induced growth retardation and intestinal damages in broilers.展开更多
Bacterial cells rely on signaling molecules to communicate with others from the same species and induce certain genes in a process known as quorum sensing (QS). A common molecule is N-acyl homoserine lactone (AHL) whi...Bacterial cells rely on signaling molecules to communicate with others from the same species and induce certain genes in a process known as quorum sensing (QS). A common molecule is N-acyl homoserine lactone (AHL) which is responsible for the expression of virulence and other factors that allow the organisms to compete in a given environment. On the other hand, other bacteria produce certain enzymes such as AHL-lactonase that break down AHL molecules and prevent gene expression of these factors. The aim of this work was to examine the level of degradation of AHL molecules by AHL-lactonase in 62 Bacillus thuringiensis (Bt) strains isolated from Middle Tennessee, Mississippi, and Alabama. N-hexanoyl-homoserine lactone (C<sub>6</sub>-HSL) and N-3-oxo-hexanoyl homoserine lactone (3-oxo-C<sub>6</sub>-HSL), which cause Chromobacterium violaceum (CV026) to produce a purple pigment were tested at different concentrations to view the Bt lactonase activity. In addition, PCR was used to test for the presence of the lactonase gene. The results showed that among the 62 Bt strains, there were 58 that possessed the AHL-lactonase (aiiA) gene and 48 strains were able to degrade C<sub>6</sub>-HSL. At high concentrations of AHL, only 13 strains were able to completely degrade C6-HSL. In addition, degradation of 3-oxo-C<sub>6</sub>-HSL was weak compared to C<sub>6</sub>-HSL. The results also revealed that AHL lactonase was thermostable, and it was concluded that the level of degradation varies in Bt strains. Only 13 of the strains studied have potent inhibitory activity against C<sub>6</sub>-HSL, which may be good to be used in field applications to control agricultural pest.展开更多
The aim of this work was to inhibit biofilm formation by taking advantages of bacterial surface display technology in combination with cell membrane chromatography.A recombinant protein INPAidH was constructed by fusi...The aim of this work was to inhibit biofilm formation by taking advantages of bacterial surface display technology in combination with cell membrane chromatography.A recombinant protein INPAidH was constructed by fusing a quorum signal hydrolase AidH to the C-terminus of the ice nucleation protein(INP).Expression of INP-AidH was achieved on E.coli cell surface at an expression level of 30%of total membrane proteins.Activity of INP-AidH on cell membranes was confirmed in degrading the quorum signal C6-HSL as well as inhibiting bacterial biofilm.Immobilization of INP-AidH anchored cell membranes on silica gel particles was facilitated by taking advantages of cell membrane chromatography.The functionalized silica gel particles also exhibit activities in degrading C6-HSL and inhibiting bacterial biofilm.This article presents a new approach to prevent biofilm formation of silica-based materials.展开更多
The aim of this research was to detect the N-acyl homoserine lactones (AHLs) production and QseB/C gene of Aeromonas hydrophila. We analyzed the potentials of these isolates of Aeromonas hydrophila in causing biofilm ...The aim of this research was to detect the N-acyl homoserine lactones (AHLs) production and QseB/C gene of Aeromonas hydrophila. We analyzed the potentials of these isolates of Aeromonas hydrophila in causing biofilm formation, hemolysis, protease, and lipase. The antibiotic susceptibility of the 15 Aeromonas hydrophila isolates was also investigated. The detection of AHLs was carried out using the Chromobacterium violaceum strain CV026 as biosensors. The isolated strains were tested for the reaction of C. violaceum CV026 by cross-streaking on an agar plate. Production of AHLs was determined by the diffusing via the agar plates and the tinge of the biosensor strains. All isolated strains produced AHLs. A polymerase chain reaction (PCR) showed the isolated strains had qseB and qseC genes. Susceptibility tests of A. hydrophila isolates were administered against 25 different antibiotic disks representing 12 classes of antibiotics. The strains were highly resistant to β-Lactam with 96.7% showing resistibility, whereas 97.7% susceptibility was found towards Aminoglycoside class of the antibiotic used. 60% showed intermediate resistant to Polypeptide. 100% of the strains showed no resistant to Aminoglycoside, Polypeptide, Monobactam, and Carbapenems class of antibiotics. Each of the isolates was found to be associated with at least one virulent factor. Our results clearly demonstrated that there is a presence of QseB/C genes in A. hydrophila and also produces AHLs molecule and virulence factors. The investigated isolates showed the pathogenic potential of Aeromonas hydrophila which makes it a serious threat to public health.展开更多
This study presents a fast, accurate and sensitive technique using gas chromatography-mass spectrometry (GC-MS) for the identification and quantification of N-acyl homoserine lactones (AHLs) in the extracts of bacteri...This study presents a fast, accurate and sensitive technique using gas chromatography-mass spectrometry (GC-MS) for the identification and quantification of N-acyl homoserine lactones (AHLs) in the extracts of bacterial strain of Pseudomonas aeruginosa and sputum sample of a cystic fibrosis patient. This method involves direct separation and determination of AHLs by using GC-MS as simultaneous separation and characterization of AHLs were possible without any prior derivatiza-tion. Electron ionization resulted in a common fragmentation pattern with the most common fragment ion at m/z 143 and other minor peaks at 73, 57 and 43. The limit of detection for N-butanoyl, N-hexanoyl, N-octanoyl, N-decanoyl, N-dodecanoyl and N-tetradecanoyl homoserine lactones was 2.14, 3.59, 2.71, 2.10, 2.45 and 2.34 μg/L, respectively. The presence of AHLs in the culture of P. aeruginosa strain and spu-tum of a cystic fibrosis patient was achieved in selected ion monitoring (SIM) mode by using the prominent fragment at m/z 143.展开更多
Amorphophallus konjac is an important economic crop widely cultivated in Southeast Asia and Africa. However, A. konjac is seriously infected by soft rot pathogen. The endocellular acyl homoserine lactonase (AiiA) whic...Amorphophallus konjac is an important economic crop widely cultivated in Southeast Asia and Africa. However, A. konjac is seriously infected by soft rot pathogen. The endocellular acyl homoserine lactonase (AiiA) which is generated by Bacillus species has inhibitory effect on soft rot pathogen through disrupting the signal molecules (N-acylhomoserine lactones, AHL) of their Quorum Sensing system. The aim of our study is to obtain recombinant yeast which produces AiiA protein. The recombinant yeast Pichia pastoris GS115 was constructed to constitutive expression of the AiiA gene. The results of reverse transcript PCR analysis showed that the AiiA gene was expressed successfully in the yeast. Proteins extracted from YPDS showed the highest inhibition efficacy to E. carotovora compared with the other two mediums (YPD and LB) under tested conditions.展开更多
Quorum sensing, or auto induction, as a cell density dependent signaling mechanism in many microorganisms, is trig- gered via auto inducers which passively diffuse across the bacterial envelope and therefore intracell...Quorum sensing, or auto induction, as a cell density dependent signaling mechanism in many microorganisms, is trig- gered via auto inducers which passively diffuse across the bacterial envelope and therefore intracellulaly accumulate only at higher bacterial densities to regulate specialized processes such as genetic competence, bioluminescence, virulence and sporulation. N-acyl homoserine lactones are the most common type of signal molecules. Aquaculture is one of the fastest-growing food-producing indus- tries, but disease outbreaks caused by pathogenic bacteria are a significant constraint on the development of the sector worldwide. Many of these pathogens have been found to be controlled by their quorum sensing systems. As there is relevance between the pathogenic bacteria's virulence factor expression and their auto inducers, quorum quenching is a new effective anti-infective strategy to control infections caused by bacterial pathogens in aquaculture. The techniques used to do this mainly include the following: (1) the inhibition of signal molecule biosynthesis, (2) blocking signal transduction, and (3) chemical inactivation and biodegradation of signal molecules. To provide a basis for finding alternative means of controlling aquatic diseases by quorum quenching instead of treatment by antibiotics and disinfectants, we will discuss the examination, purification and identification of auto inducers in this paper.展开更多
基金financially supported by the National Natural Science Foundation of China(No.31872390)the Modern Feed Industry Innovation Team Project of Guangdong Province(No.2021KJ115)。
文摘Background Salmonella Typhimurium challenge causes a huge detriment to chicken production.N-acyl homoserine lactonase(AHLase),a quorum quenching enzyme,potentially inhibits the growth and virulence of Gram-negative bacteria.However,it is unknown whether AHLase can protect chickens against S.Typhimurium challenge.This study aimed to evaluate the effects of AHLase on growth performance and intestinal health in broilers challenged by S.Typhimurium.A total of 240 one-day-old female crossbred broilers(817C)were randomly divided into 5 groups(6 replicates/group):negative control(NC),positive control(PC),and PC group supplemented with 5,10 or 20 U/g AHLase.All birds except those in NC were challenged with S.Typhimurium from 7 to 9 days of age.All parameters related to growth and intestinal health were determined on d 10 and 14.Results The reductions(P<0.05)in body weight(BW)and average daily gain(ADG)in challenged birds were alleviated by AHLase addition especially at 10 U/g.Thus,samples from NC,PC and PC plus 10 U/g AHLase group were selected for further analysis.S.Typhimurium challenge impaired(P<0.05)intestinal morphology,elevated(P<0.05)ileal inflammatory cytokines(IL-1βand IL-8)expression,and increased(P<0.05)serum diamine oxidase(DAO)activity on d 10.However,AHLase addition normalized these changes.Gut microbiota analysis on d 10 showed that AHLase reversed the reductions(P<0.05)in several beneficial bacteria(e.g.Bacilli,Bacillales and Lactobacillales),along with increases(P<0.05)in certain harmful bacteria(e.g.Proteobacteria,Gammaproteobacteria,Enterobacteriaceae and Escherichia/Shigel a)in PC group.Furthermore,AHLase-induced increased beneficial bacteria and decreased harmful bacteria were basically negatively correlated(P<0.05)with the reductions of ileal IL-1βand IL-8 expression and serum DAO activity,but positively correlated(P<0.05)with the increased BW and ADG.Functional prediction revealed that AHLase abolished S.Typhimurium-induced upregulations(P<0.05)of certain pathogenicity-related pathways such as lipopolysaccharide biosynthesis,shigellosis,bacterial invasion of epithelial cells and pathogenic Escherichia coli infection of gut microbiota.Conclusions Supplemental AHLase attenuated S.Typhimurium-induced growth retardation and intestinal disruption in broilers,which could be associated with the observed recovery of gut microbiota dysbiosis.
基金financially supported by the National Natural Science Foundation of China(No.32102584)the Modern Feed Industry Innovation Team Project of Guangdong Province(No.2021KJ115)。
文摘This study aimed to investigate the potential mitigating effects of N-acyl homoserine lactonase(AHLase)on the virulence of Salmonella typhimurium and its induction of intestinal damages in broilers.In vitro study was firstly conducted to examine if AHLase treatment could attenuate the virulence of S.typhimurium.Then,an in vivo experiment was performed by allocating 240 broiler chicks at 1 d old into 3 groups(8 replicates per group):negative control(NC),positive control(PC),and PC supplemented with 10,000 U/kg AHLase.All chicks except those in NC were orally challenged by S.typhimurium from 8to 10 d of age.Parameters were measured on d 11 and 21.The results showed that treatment with 1 U/mL AHLase suppressed the biofilm-forming ability(including biofilm biomass,extracellular DNA secretion and biofilm formation-related gene expression),together with swarming motility and adhesive capacity of S.typhimurium.Supplemental 10,000 U/kg AHLase counteracted S.typhimurium-induced impairments(P<0.05)in broiler growth performance(including final body weight,average daily gain and average daily feed intake)during either 1-11 d or 12-21 d,and increases(P<0.05)in the indexes of liver,spleen and bursa of Fabricius on d 11,together with reductions(P<0.05)in ileal villus height and its ratio to crypt depth on both d 11 and 21.AHLase addition also normalized the increased(P<0.05)m RNA expression of ileal occludin on both d 11 and 21 in S.typhimurium-challenged broilers.However,neither S.typhimurium challenge nor AHLase addition altered(P>0.05)serum diamine oxidase activity of broilers.Noticeably,S.typhimurium challenge caused little change in the mRNA expression of ileal inflammatory cytokines except for an increase(P<0.05)in interleukin-8 expression on d 11,whereas AHLase addition normalized(P<0.05)this change.In conclusion,AHLase treatment could attenuate the virulence and pathogenicity of S.typhimurium,thus contributing to alleviate S.typhimurium-induced growth retardation and intestinal damages in broilers.
文摘Bacterial cells rely on signaling molecules to communicate with others from the same species and induce certain genes in a process known as quorum sensing (QS). A common molecule is N-acyl homoserine lactone (AHL) which is responsible for the expression of virulence and other factors that allow the organisms to compete in a given environment. On the other hand, other bacteria produce certain enzymes such as AHL-lactonase that break down AHL molecules and prevent gene expression of these factors. The aim of this work was to examine the level of degradation of AHL molecules by AHL-lactonase in 62 Bacillus thuringiensis (Bt) strains isolated from Middle Tennessee, Mississippi, and Alabama. N-hexanoyl-homoserine lactone (C<sub>6</sub>-HSL) and N-3-oxo-hexanoyl homoserine lactone (3-oxo-C<sub>6</sub>-HSL), which cause Chromobacterium violaceum (CV026) to produce a purple pigment were tested at different concentrations to view the Bt lactonase activity. In addition, PCR was used to test for the presence of the lactonase gene. The results showed that among the 62 Bt strains, there were 58 that possessed the AHL-lactonase (aiiA) gene and 48 strains were able to degrade C<sub>6</sub>-HSL. At high concentrations of AHL, only 13 strains were able to completely degrade C6-HSL. In addition, degradation of 3-oxo-C<sub>6</sub>-HSL was weak compared to C<sub>6</sub>-HSL. The results also revealed that AHL lactonase was thermostable, and it was concluded that the level of degradation varies in Bt strains. Only 13 of the strains studied have potent inhibitory activity against C<sub>6</sub>-HSL, which may be good to be used in field applications to control agricultural pest.
基金Funded by the National Natural Science Foundation of China(No.31771032)。
文摘The aim of this work was to inhibit biofilm formation by taking advantages of bacterial surface display technology in combination with cell membrane chromatography.A recombinant protein INPAidH was constructed by fusing a quorum signal hydrolase AidH to the C-terminus of the ice nucleation protein(INP).Expression of INP-AidH was achieved on E.coli cell surface at an expression level of 30%of total membrane proteins.Activity of INP-AidH on cell membranes was confirmed in degrading the quorum signal C6-HSL as well as inhibiting bacterial biofilm.Immobilization of INP-AidH anchored cell membranes on silica gel particles was facilitated by taking advantages of cell membrane chromatography.The functionalized silica gel particles also exhibit activities in degrading C6-HSL and inhibiting bacterial biofilm.This article presents a new approach to prevent biofilm formation of silica-based materials.
文摘The aim of this research was to detect the N-acyl homoserine lactones (AHLs) production and QseB/C gene of Aeromonas hydrophila. We analyzed the potentials of these isolates of Aeromonas hydrophila in causing biofilm formation, hemolysis, protease, and lipase. The antibiotic susceptibility of the 15 Aeromonas hydrophila isolates was also investigated. The detection of AHLs was carried out using the Chromobacterium violaceum strain CV026 as biosensors. The isolated strains were tested for the reaction of C. violaceum CV026 by cross-streaking on an agar plate. Production of AHLs was determined by the diffusing via the agar plates and the tinge of the biosensor strains. All isolated strains produced AHLs. A polymerase chain reaction (PCR) showed the isolated strains had qseB and qseC genes. Susceptibility tests of A. hydrophila isolates were administered against 25 different antibiotic disks representing 12 classes of antibiotics. The strains were highly resistant to β-Lactam with 96.7% showing resistibility, whereas 97.7% susceptibility was found towards Aminoglycoside class of the antibiotic used. 60% showed intermediate resistant to Polypeptide. 100% of the strains showed no resistant to Aminoglycoside, Polypeptide, Monobactam, and Carbapenems class of antibiotics. Each of the isolates was found to be associated with at least one virulent factor. Our results clearly demonstrated that there is a presence of QseB/C genes in A. hydrophila and also produces AHLs molecule and virulence factors. The investigated isolates showed the pathogenic potential of Aeromonas hydrophila which makes it a serious threat to public health.
文摘This study presents a fast, accurate and sensitive technique using gas chromatography-mass spectrometry (GC-MS) for the identification and quantification of N-acyl homoserine lactones (AHLs) in the extracts of bacterial strain of Pseudomonas aeruginosa and sputum sample of a cystic fibrosis patient. This method involves direct separation and determination of AHLs by using GC-MS as simultaneous separation and characterization of AHLs were possible without any prior derivatiza-tion. Electron ionization resulted in a common fragmentation pattern with the most common fragment ion at m/z 143 and other minor peaks at 73, 57 and 43. The limit of detection for N-butanoyl, N-hexanoyl, N-octanoyl, N-decanoyl, N-dodecanoyl and N-tetradecanoyl homoserine lactones was 2.14, 3.59, 2.71, 2.10, 2.45 and 2.34 μg/L, respectively. The presence of AHLs in the culture of P. aeruginosa strain and spu-tum of a cystic fibrosis patient was achieved in selected ion monitoring (SIM) mode by using the prominent fragment at m/z 143.
文摘Amorphophallus konjac is an important economic crop widely cultivated in Southeast Asia and Africa. However, A. konjac is seriously infected by soft rot pathogen. The endocellular acyl homoserine lactonase (AiiA) which is generated by Bacillus species has inhibitory effect on soft rot pathogen through disrupting the signal molecules (N-acylhomoserine lactones, AHL) of their Quorum Sensing system. The aim of our study is to obtain recombinant yeast which produces AiiA protein. The recombinant yeast Pichia pastoris GS115 was constructed to constitutive expression of the AiiA gene. The results of reverse transcript PCR analysis showed that the AiiA gene was expressed successfully in the yeast. Proteins extracted from YPDS showed the highest inhibition efficacy to E. carotovora compared with the other two mediums (YPD and LB) under tested conditions.
文摘Quorum sensing, or auto induction, as a cell density dependent signaling mechanism in many microorganisms, is trig- gered via auto inducers which passively diffuse across the bacterial envelope and therefore intracellulaly accumulate only at higher bacterial densities to regulate specialized processes such as genetic competence, bioluminescence, virulence and sporulation. N-acyl homoserine lactones are the most common type of signal molecules. Aquaculture is one of the fastest-growing food-producing indus- tries, but disease outbreaks caused by pathogenic bacteria are a significant constraint on the development of the sector worldwide. Many of these pathogens have been found to be controlled by their quorum sensing systems. As there is relevance between the pathogenic bacteria's virulence factor expression and their auto inducers, quorum quenching is a new effective anti-infective strategy to control infections caused by bacterial pathogens in aquaculture. The techniques used to do this mainly include the following: (1) the inhibition of signal molecule biosynthesis, (2) blocking signal transduction, and (3) chemical inactivation and biodegradation of signal molecules. To provide a basis for finding alternative means of controlling aquatic diseases by quorum quenching instead of treatment by antibiotics and disinfectants, we will discuss the examination, purification and identification of auto inducers in this paper.