The alcohol and n-butanol extract of Potentilla anserine L. significantly protects myocardium from acute ischemic injury. However, its effects on rat hippocampal neurons and the mechanism of protection remain unclear....The alcohol and n-butanol extract of Potentilla anserine L. significantly protects myocardium from acute ischemic injury. However, its effects on rat hippocampal neurons and the mechanism of protection remain unclear. In this study, primary cultured hippocampal neurons from neonatal rats were incubated in 95% N2 and 5% CO2 for 4 hours. Results indicated that hypoxic injury decreased the viability of neurons, increased the expression levels of caspase-9 and caspase-3 mRNA, as well as cytochrome c, Caspase-9, and Caspase-3 protein. Pretreatment with 0.25, 0.062 5, 0.015 6 mg/mL n-butanol extract of Potentilla anserine L. led to a significant increase in cell viability. Expression levels of caspase-9 and caspase-3 mRNA, as well as cytochrome c, Caspase-9, and Caspase-3 protein, were attenuated. The neuroprotective effect of n-butanol extract of Potentilla anserine L. was equivalent to tanshinone IIA. Our data suggest that the n-butanol extract of Potentilla anserine L. could protect primary hippocampal neurons from hypoxic injury by deactivating mitochondrial cell death.展开更多
Preliminary work by our research team revealed that Schisandra, a renowned traditional Chinese medicine, causes learning and memory improvements in ovariectomized mice. This activity was attributed to active ingredien...Preliminary work by our research team revealed that Schisandra, a renowned traditional Chinese medicine, causes learning and memory improvements in ovariectomized mice. This activity was attributed to active ingredients extracted with N-butyl alcohol, named Schisandra N-butanol extract. In this study, ovariectomized mice were pretreated with Schisandra N-butanol extract given by intragastric administration. This treatment led to the enhancement of learning, and an increase in hippocampal CA1 synaptic, surface and postsynaptic density. A decrease in the average size of the synaptic active zone was also observed. These experimental findings showing that Schisandra N-butanol extract improved synaptic morphology indicate an underlying mechanism by which the ability of learning is enhanced in ovariectomized mice.展开更多
[Objectives]To study the protective effect and mechanism of n-butanol extract of Diploclisia glaucescens(B1.)Diels on rats with adjuvant arthritis.[Methods]A rat adjuvant arthritis(AA)model with similarities to a clin...[Objectives]To study the protective effect and mechanism of n-butanol extract of Diploclisia glaucescens(B1.)Diels on rats with adjuvant arthritis.[Methods]A rat adjuvant arthritis(AA)model with similarities to a clinical RA(rheumatoid arthritis)patient was used,and the model was made by injection of Complete Freund s adjuvant(CFA).Body mass and joint swelling degree were used as indicators,and the organ index was calculated and the synovial tissue of rats was examined under microscope to evaluate the protective effect of n-butanol extract on arthritis.The effects of n-butanol extract on TNF-α,IL-1βand PGE_(2)contents in rat serum were detected by ELISA kit.[Results]Arthritic rats experienced significant weight loss;the n-butanol extract reduced the joint swelling in rats.It exerted an effect on rat organs and reduced the contents of TNF-α,IL-1βand PGE_(2) in rat serum,and also reduced synovial inflammation in rats.[Conclusions]The n-butanol extract of D.glaucescens can protect rats with adjuvant arthritis by reducing the content of inflammatory factors.展开更多
The herb Butea monosperma constitutes several human health beneficial components, which are mostly studied for their anticancer effects. In this study, the activity of n-butanol fractions of B. monosperma floral extra...The herb Butea monosperma constitutes several human health beneficial components, which are mostly studied for their anticancer effects. In this study, the activity of n-butanol fractions of B. monosperma floral extract was examined on inhibiting aberrant crypt foci(ACF) formation in azoxymethane induced Wistar albino rats. The n-butanol extracts(150 mg/kg) decreased the ACF formation(per rat) by 92% and78% in short- and long-term in vivo treatments, respectively. All the compounds in the n-butanol extract were isolated and purified using column and reverse-phase high pressure liquid chromatography(HPLC).Their structures were characterized using UV–visible spectroscopy, nuclear magnetic resonance(NMR)and electrospray–ionisation mass spectrometry(ESI–MS) to determine important flavonoids, namely isocoreopsin, butrin and isobutrin. These compounds were studied for their free radical scavenging and anticancer activities. The compound isocoreopsin showed significantly greater efficacy in cell death on human colon and liver cancer cell lines(50 μg/m L in HT-29 and 100 μg/m L in Hep G2) than butrin(100 μg/m L in HT-29 and 500 μg/m L in Hep G2) and isobutrin(80 μg/m L in HT-29 and 150 μg/m L in Hep G2). These results suggest that isocoreopsin, butrin and isobutrin are the important key compounds for the chemoprevention of colon cancer and isocoreopsin can be considered as a promising novel drug.展开更多
Silver nanoparticles(Ag NPs)have attracted attention in the field of biomaterials due to their excellent antibacterial property.However,the reducing and stabilizing agents used for the chemical reduction of Ag NPs are...Silver nanoparticles(Ag NPs)have attracted attention in the field of biomaterials due to their excellent antibacterial property.However,the reducing and stabilizing agents used for the chemical reduction of Ag NPs are usually toxic and may cause water pollution.In this work,Ag NPs(31.2 nm in diameter)were prepared using the extract of straw,an agricultural waste,as the reducing and stabilizing agent.Experimental analysis revealed that the straw extract contained lignin,the structure of which possesses phenolic hydroxyl and methoxy groups that facilitate the reduction of silver salts into Ag NPs.The surfaces of Ag NPs were negatively charged due to the encapsulation of a thin layer of lignin molecules that prevented their aggregation.After the prepared Ag NPs were added to the precursor solution of acrylamide,free radical polymerization was triggered without the need for extra heating or light irradiation,resulting in the rapid formation of an Ag NP-polyacrylamide composite hydrogel.The inhibition zone test proved that the composite hydrogel possessed excellent antibacterial ability due to the presence of Ag NPs.The prepared hydrogel may have potential applications in the fabrication of biomedical materials,such as antibacterial dressings.展开更多
Background:Ampelopsis grossedentata,vine tea,which is the tea alternative beverages in China.In vine tea processing,a large amount of broken tea is produced,which has low commercial value.Methods:This study investigat...Background:Ampelopsis grossedentata,vine tea,which is the tea alternative beverages in China.In vine tea processing,a large amount of broken tea is produced,which has low commercial value.Methods:This study investigates the influence of different extraction methods(room temperature water extraction,boiling water extraction,ultrasonic-assisted room temperature water extraction,and ultrasonic-assisted boiling water extraction,referred to as room temperature water extraction(RE),boiling water extraction(BE),ultrasonic assistance at room temperature water extraction(URE),and ultrasonic assistance in boiling water extraction(UBE))on the yield,dihydromyricetin(DMY)content,free amino acid composition,volatile aroma components,and antioxidant properties of vine tea extracts.Results:A notable influence of extraction temperature on the yield of vine tea extracts(P<0.05),with BE yielding the highest at 43.13±0.26%,higher than that of RE(34.29±0.81%).Ultrasound-assisted extraction significantly increased the DMY content of the extracts(P<0.05),whereas DMY content in the RE extracts was 59.94±1.70%,that of URE reached 66.14±2.78%.Analysis revealed 17 amino acids,with L-serine and aspartic acid being the most abundant in the extracts,nevertheless ultrasound-assisted extraction reduced total free amino acid content.Gas chromatography-mass spectrometry analysis demonstrated an increase in the diversity and quantity of compounds in the vine tea water extracts obtained through ultrasonic-assisted extraction.Specifically,69 and 68 volatile compounds were found in URE and UBE extracts,which were higher than the number found in RE and BE extracts.In vitro,antioxidant activity assessments revealed varying antioxidant capacities among different extraction methods,with RE exhibiting the highest DPPH scavenging rate,URE leading in ABTS•+free radical scavenging,and BE demonstrating superior ferric ion reducing antioxidant activity.Conclusion:The findings suggest that extraction methods significantly influence the chemical composition and antioxidant properties of vine tea extracts.Ultrasonic-assisted extraction proved instrumental in elevating the DMY content in vine tea extracts,thereby enriching its flavor profile while maintaining its antioxidant properties.展开更多
This study investigated the use of raspberry extract(RBE) for mitigating ethyl carbamate(EC) accumulation in Chinese rice wine(Huangjiu), a traditional fermented beverage. It focused on the addition of RBE to the ferm...This study investigated the use of raspberry extract(RBE) for mitigating ethyl carbamate(EC) accumulation in Chinese rice wine(Huangjiu), a traditional fermented beverage. It focused on the addition of RBE to the fermentation mash and its effects on EC levels. The results showed a significant reduction in EC production that could be attributed to RBE's role in altering urea and citrulline catabolism and inhibiting arginine metabolism, thus preventing EC precursors from reacting with ethanol. Additionally, RBE enhanced the rice wine's flavor profile, as shown by volatile component and amino acid analysis. This study also explored RBE's impact on the metabolism of arginine by Saccharomyces cerevisiae in a simulated fermentation environment, and found increased arginine, reduced urea and citrulline levels, altered enzyme activities, and gene expression changes in the arginine metabolism and transport pathways. In conclusion, the results clearly demonstrated RBE's efficacy in reducing the EC content in Chinese rice wine, offering valuable insights for EC reduction strategies.展开更多
AIM:To evaluate the effect of femtosecond laser small incision lenticule extraction(SMILE)on the binocular visual function in myopic patients with glasses-free threedimensional(3D)technique.METHODS:Totally 50 myopic p...AIM:To evaluate the effect of femtosecond laser small incision lenticule extraction(SMILE)on the binocular visual function in myopic patients with glasses-free threedimensional(3D)technique.METHODS:Totally 50 myopic patients(39 females and 11 males)with SMILE were enrolled in this prospective study.The glasses-free 3D technique was used to evaluate the binocular visual function in these subjects including static stereopsis,dynamic stereopsis,foveal suppression,and binocular balance point of signal to noise ratio(s/n ratio).All subjects received measurements in 1d before operation,and 1d,1wk,and 1mo postoperatively.RESULTS:Both static and dynamic stereopsis showed no significant difference after SMILE.The foveal suppression improved significantly 1wk and 1mo after SMILE(P=0.005 and P=0.007 respectively).The binocular balance point of signal to noise ratio showed a significant improvement 1d,1wk and 1mo after SMILE for both eyes(P<0.001 for each eye respectively).CONCLUSION:Glasses-free 3D technique can be used to evaluate the effect of SMILE on the binocular visual function in myopic patients perceptively,and SMILE can improve both foveal suppression and binocular imbalance in these patients.展开更多
The valorization of Amazonian wood residues into active chemical compounds could be an eco-friendly,cost-effective and valuable way to develop wood preservative formulations to enhance the decay and termite resistance...The valorization of Amazonian wood residues into active chemical compounds could be an eco-friendly,cost-effective and valuable way to develop wood preservative formulations to enhance the decay and termite resistance of low-durable wood species.Wacapou(Vouacapoua americana.,Fabaceae)is a well-known Guianese wood spe-cies commonly used in local wood construction due to its outstanding natural durability,which results from the presence of a large panel of extractives compounds.In addition,its industrial processing generates large amounts of residues.Wacapou residues were extracted by maceration using four different solvents(water/ethanol,ethyl acetate,hexane and dichloromethane/methanol),separately and successively.The yield of each extractive fraction was determined,and their chemical compositions were analyzed by Liquid Chromatography-Mass Spectrometry(LC-MS).Ethyl acetate led to the highest extraction yield,and the active compounds were identified in the obtained extractive fraction.In this sense,the fungicidal and termite-repellent properties of these extractives were then tested using a screening laboratory(with temperate and tropical microorganisms),according to the solution concentration(1%,2.5%,5%,8%and 10%).Finally,Virola michelii Heckel wood samples(low durable species)were impregnated with the 8%concentration solution.The impregnated wood samples were then exposed to a soil bed test.The results highlighted that the nature of the solvent used during wood maceration affects the con-tent of the obtained extractive fractions.Ultra-Performance Liquid Chromatography–High-Resolution Mass Spectrometry(UHPLC-HRMS)analyses showed the influence of extraction parameters on the nature of the extracted molecules.Wacapou extracts(from ethyl acetate maceration)showed good anti-fungal and anti-termite activities.Additionally,the concentration in extractives had an impact on the anti-termite activity level for Reti-culitermesflavipes and Cryptotermes sp.Formulations based on Wacapou extractives showed a good potential for valorization in eco-friendly preservatives,aiming to confer better durability to local low-durability wood species.展开更多
This research optimized the structure of lithium extraction solar ponds to enhance the crystallization rate and yield of Li_(2)CO_(3).Using the response surface methodology in Design-Expert 10.0.3,the authors conducte...This research optimized the structure of lithium extraction solar ponds to enhance the crystallization rate and yield of Li_(2)CO_(3).Using the response surface methodology in Design-Expert 10.0.3,the authors conducted experiments to investigate the influence of four factors related to solar pond structure on the crystallization of Li_(2)CO_(3) and their pairwise interactions.Computational Fluid Dynamics(CFD)simulations of the flow field within the solar pond were performed using COMSOL Multiphysics software to compare temperature distributions before and after optimization.The results indicate that the optimal structure for lithium extraction from the Zabuye Salt Lake solar ponds includes UCZ(Upper Convective Zone)thickness of 53.63 cm,an LCZ(Lower Convective Zone)direct heating temperature of 57.39℃,a CO32−concentration of 32.21 g/L,and an added soda ash concentration of 6.52 g/L.Following this optimized pathway,the Li_(2)CO_(3) precipitation increased by 7.34% compared to the initial solar pond process,with a 33.33% improvement in lithium carbonate crystallization rate.This study demonstrates the feasibility of optimizing lithium extraction solar pond structures,offering a new approach for constructing such ponds in salt lakes.It provides valuable guidance for the efficient extraction of lithium resources from carbonate-type salt lake brines.展开更多
With the development of the new energy industry and the depletion of nickel sulfide ore resources,laterite nickel ore has become the main source of primary nickel,and nickel for power batteries has become a new growth...With the development of the new energy industry and the depletion of nickel sulfide ore resources,laterite nickel ore has become the main source of primary nickel,and nickel for power batteries has become a new growth point in consumption.This paper systematically summarizes the processes,parameters,products,recovery rates,environmental indicators,costs,advantages,disadvantages and the latest research progress of mainstream nickel extraction processes from laterite nickel ore.It also provides a comparative analysis of the environmental impact and economic efficiency of different nickel extraction processes.It is found that the current nickel extraction processes from laterite nickel ore globally for commercial production mainly include the RKEF process for producing ferronickel and the HPAL process for producing intermediate products.The former accounts for about 80%of laterite nickel ore production.Compared to each other,the investment cost per ton of nickel metal production capacity for the RKEF is about 43000$,with an operational cost of about 16000$per ton of nickel metal and a total nickel recovery rate of 77%–90%.Its products are mainly used in stainless steels.For the HPAL process,the investment cost per ton of nickel metal production capacity is about 56000$,with an operational cost of about 15000$per ton of nickel metal and a total nickel recovery rate of 83%–90%.Its products are mainly used in power batteries.The significant differences between the two lies in energy consumption and carbon emissions,with the RKEF being 2.18 and 2.37 times that of the HPAL,respectively.Although the use of clean energy can greatly reduce the operational cost and environmental impact of RKEF,if RKEF is converted to producing high Ni matte,its economic and environmental performance still cannot match that of the HPAL and oxygen-enriched side-blown processes.Therefore,it can be inferred that with the increasing demand for nickel in power batteries,HPAL and oxygen-enriched side blowing processes will play a greater role in laterite nickel extraction.展开更多
A new reactive and extractive distillation process with ionic liquids as entrainer and catalyst (RED-IL)was proposed to produce methanol and n-butyl acetate by transesterification reaction of methyl acetate with n-b...A new reactive and extractive distillation process with ionic liquids as entrainer and catalyst (RED-IL)was proposed to produce methanol and n-butyl acetate by transesterification reaction of methyl acetate with n-butanol. The RED-IL process was simulated via a rigorous model, and high purity products of methanol and n-butyl acetate can be obtained in such a process. The effects of reflux ratio, feed mode, holdup, feed location, entrainer ratio and catalyst concentration on RED-IL process were investigated. The conversion of methyl acetate and purities of products increase with the holdup in column, entrainer ratio and catalyst content. An optimal reflux ratio exists in RED-IL process. Comparing to the mixed-feed mode, the segregated-feed mode is more effective, in which the optimal feed locations of reactants exist.展开更多
In many chemical processes, large amounts of wastewater containing butanol and isobutanol are produced.Given that n-butanol-isobutanol-water can form triple azeotrope, high-purity butanol cannot be recovered from the ...In many chemical processes, large amounts of wastewater containing butanol and isobutanol are produced.Given that n-butanol-isobutanol-water can form triple azeotrope, high-purity butanol cannot be recovered from the wastewater by ordinary distillation. To economically and effectively recover butanol from this kind of wastewater, 1,4-butanediol is selected as an extractant to break the formation of the azeotropes, and a doubleeffect extractive distillation process is proposed. The conceptual design of the proposed process is accomplished based on process simulation. With the proposed process, the purity of recovered butanol and water is greater than 99.99 wt%. In comparison with the conventional azeotropic distillation process, economic analysis shows that the operating cost of the proposed process is lower: when the capacity of wastewater treatment is 100 t·h^(-1), the total operating cost decreases by 5.385 ×10~6 USD per year, and the total annual cost of the new process decreases by 5.249 ×10~6 USD per year. In addition, in the extractive distillation system, variable effects on separation purities and cost are more complex than those in the ordinary distillation system. The method and steps to optimize the key variables of the extractive distillation system are also discussed in this paper and can provide reference for similar studies.展开更多
Background Ginkgo biloba extract(GBE)is evidenced to be effective in the prevention and alleviation of metabolic disorders,including obesity,diabetes and fatty liver disease.However,the role of GBE in alleviating fatt...Background Ginkgo biloba extract(GBE)is evidenced to be effective in the prevention and alleviation of metabolic disorders,including obesity,diabetes and fatty liver disease.However,the role of GBE in alleviating fatty liver hemorrhagic syndrome(FLHS)in laying hens and the underlying mechanisms remain to be elucidated.Here,we investigated the effects of GBE on relieving FLHS with an emphasis on the modulatory role of GBE in chicken gut microbiota.Results The results showed that GBE treatment ameliorated biochemical blood indicators in high-fat diet(HFD)-induced FLHS laying hen model by decreasing the levels of TG,TC,ALT and ALP.The lipid accumulation and pathological score of liver were also relieved after GBE treatment.Moreover,GBE treatment enhanced the antioxidant activity of liver and serum by increasing GSH,SOD,T-AOC,GSH-PX and reducing MDA,and downregulated the expression of genes related to lipid synthesis(FAS,LXRα,GPAT1,PPARγand Ch REBP1)and inflammatory cytokines(TNF-α,IL-6,TLR4 and NF-κB)in the liver.Microbial profiling analysis revealed that GBE treatment reshaped the HFD-perturbed gut microbiota,particularly elevated the abundance of Megasphaera in the cecum.Meanwhile,targeted metabolomic analysis of SCFAs revealed that GBE treatment significantly promoted the production of total SCFAs,acetate and propionate,which were positively correlated with the GBE-enriched gut microbiota.Finally,we confirmed that the GBE-altered gut microbiota was sufficient to alleviate FLHS by fecal microbiota transplantation(FMT).Conclusions We provided evidence that GBE alleviated FLHS in HFD-induced laying hens through reshaping the composition of gut microbiota.Our findings shed light on mechanism underlying the anti-FLHS efficacy of GBE and lay foundations for future use of GBE as additive to prevent and control FLHS in laying hen industry.展开更多
Active ingredients from highland barley have received considerable attention as natural products for developing treatments and dietary supplements against obesity.In practical application,the research of food combinat...Active ingredients from highland barley have received considerable attention as natural products for developing treatments and dietary supplements against obesity.In practical application,the research of food combinations is more significant than a specific food component.This study investigated the lipid-lowering effect of highland barley polyphenols via lipase assay in vitro and HepG2 cells induced by oleic acid(OA).Five indexes,triglyceride(TG),total cholesterol(T-CHO),low density lipoprotein-cholesterol(LDL-C),aspartate aminotransferase(AST),and alanine aminotransferase(ALT),were used to evaluate the lipidlowering effect of highland barley extract.We also preliminary studied the lipid-lowering mechanism by Realtime fluorescent quantitative polymerase chain reaction(q PCR).The results indicated that highland barley extract contains many components with lipid-lowering effects,such as hyperoside and scoparone.In vitro,the lipase assay showed an 18.4%lipase inhibition rate when the additive contents of highland barley extract were 100μg/m L.The intracellular lipid-lowering effect of highland barley extract was examined using 0.25 mmol/L OA-induced HepG2 cells.The results showed that intracellular TG,LDL-C,and T-CHO content decreased by 34.4%,51.2%,and 18.4%,respectively.ALT and AST decreased by 51.6%and 20.7%compared with the untreated hyperlipidemic HepG2 cells.q PCR results showed that highland barley polyphenols could up-regulation the expression of lipid metabolism-related genes such as PPARγand Fabp4.展开更多
Condensed and hydrolysable tannins are non-toxic natural polyphenols that are a commercial commodity industrialized for tanning hides to obtain leather and for a growing number of other industrial applications mainly ...Condensed and hydrolysable tannins are non-toxic natural polyphenols that are a commercial commodity industrialized for tanning hides to obtain leather and for a growing number of other industrial applications mainly to substitute petroleum-based products.They are a definite class of sustainable materials of the forestry industry.They have been in operation for hundreds of years to manufacture leather and now for a growing number of applications in a variety of other industries,such as wood adhesives,metal coating,pharmaceutical/medical applications and several others.This review presents the main sources,either already or potentially commercial of this forestry by-materials,their industrial and laboratory extraction systems,their systems of analysis with their advantages and drawbacks,be these methods so simple to even appear primitive but nonetheless of proven effectiveness,or very modern and instrumental.It constitutes a basic but essential summary of what is necessary to know of these sustainable materials.In doing so,the review highlights some of the main challenges that remain to be addressed to deliver the quality and economics of tannin supply necessary to fulfill the industrial production requirements for some materials-based uses.展开更多
A large number of network security breaches in IoT networks have demonstrated the unreliability of current Network Intrusion Detection Systems(NIDSs).Consequently,network interruptions and loss of sensitive data have ...A large number of network security breaches in IoT networks have demonstrated the unreliability of current Network Intrusion Detection Systems(NIDSs).Consequently,network interruptions and loss of sensitive data have occurred,which led to an active research area for improving NIDS technologies.In an analysis of related works,it was observed that most researchers aim to obtain better classification results by using a set of untried combinations of Feature Reduction(FR)and Machine Learning(ML)techniques on NIDS datasets.However,these datasets are different in feature sets,attack types,and network design.Therefore,this paper aims to discover whether these techniques can be generalised across various datasets.Six ML models are utilised:a Deep Feed Forward(DFF),Convolutional Neural Network(CNN),Recurrent Neural Network(RNN),Decision Tree(DT),Logistic Regression(LR),and Naive Bayes(NB).The accuracy of three Feature Extraction(FE)algorithms is detected;Principal Component Analysis(PCA),Auto-encoder(AE),and Linear Discriminant Analysis(LDA),are evaluated using three benchmark datasets:UNSW-NB15,ToN-IoT and CSE-CIC-IDS2018.Although PCA and AE algorithms have been widely used,the determination of their optimal number of extracted dimensions has been overlooked.The results indicate that no clear FE method or ML model can achieve the best scores for all datasets.The optimal number of extracted dimensions has been identified for each dataset,and LDA degrades the performance of the ML models on two datasets.The variance is used to analyse the extracted dimensions of LDA and PCA.Finally,this paper concludes that the choice of datasets significantly alters the performance of the applied techniques.We believe that a universal(benchmark)feature set is needed to facilitate further advancement and progress of research in this field.展开更多
AIM:To review recent innovations,challenges,and applications of small incision lenticule extraction(SMILE)extracted lenticule for treating ocular disorders.METHODS:A literature review was performed in the PubMed datab...AIM:To review recent innovations,challenges,and applications of small incision lenticule extraction(SMILE)extracted lenticule for treating ocular disorders.METHODS:A literature review was performed in the PubMed database,which was last updated on 30 December 2021.There was no limit regarding language.The authors evaluated the reference lists of the collected papers to find any relevant research.RESULTS:Due to the simplicity and accuracy of modern femtosecond lasers and the extensive development of SMILE surgery,many healthy human corneal stromal lenticules were extracted during surgery,motivating some professionals to investigate the SMILE lenticule reusability in different ocular disorders.In addition,new approaches had been developed to preserve,modify,and bioengineer the corneal stroma,leading to the optimal use of discarded byproducts such as lenticules from SMILE surgery.The lenticules can be effectively re-implanted into the autologous or allogenic corneas of human subjects to treat refractive errors,corneal ectasia,and corneal perforation and serve as a patch graft for glaucoma drainage devices with better cosmetic outcomes.CONCLUSION:SMILE-extracted lenticules could be a viable alternative to human donor corneal tissue.展开更多
Chemical solvents instead of pure water being as hydraulic fracturing fluid could effectively increase permeability and improve clean methane extraction efficiency.However,pore-fracture variation features of lean coal...Chemical solvents instead of pure water being as hydraulic fracturing fluid could effectively increase permeability and improve clean methane extraction efficiency.However,pore-fracture variation features of lean coal synergistically affected by solvents have not been fully understood.Ultrasonic testing,nuclear magnetic resonance analysis,liquid phase mass spectrometry was adopted to comprehensively analyze pore-fracture change characteristics of lean coal treated by combined solvent(NMP and CS_(2)).Meanwhile,quantitative characterization of above changing properties was conducted using geometric fractal theory.Relationship model between permeability,fractal dimension and porosity were established.Results indicate that the end face fractures of coal are well developed after CS2and combined solvent treatments,of which,end face box-counting fractal dimensions range from 1.1227 to 1.4767.Maximum decreases in ultrasonic longitudinal wave velocity of coal affected by NMP,CS_(2)and combined solvent are 2.700%,20.521%,22.454%,respectively.Solvent treatments could lead to increasing amount of both mesopores and macropores.Decrease ratio of fractal dimension Dsis 0.259%–2.159%,while permeability increases ratio of NMR ranges from 0.1904 to 6.4486.Meanwhile,combined solvent could dissolve coal polar and non-polar small molecules and expand flow space.Results could provide reference for solvent selection and parameter optimization of permeability-enhancement technology.展开更多
Lithium recovery from spent lithium-ion batteries(LIBs)have attracted extensive attention due to the skyrocketing price of lithium.The medium-temperature carbon reduction roasting was proposed to preferential selectiv...Lithium recovery from spent lithium-ion batteries(LIBs)have attracted extensive attention due to the skyrocketing price of lithium.The medium-temperature carbon reduction roasting was proposed to preferential selective extraction of lithium from spent Li-CoO_(2)(LCO)cathodes to overcome the incomplete recovery and loss of lithium during the recycling process.The LCO layered structure was destroyed and lithium was completely converted into water-soluble Li2CO_(3)under a suitable temperature to control the reduced state of the cobalt oxide.The Co metal agglomerates generated during medium-temperature carbon reduction roasting were broken by wet grinding and ultrasonic crushing to release the entrained lithium.The results showed that 99.10%of the whole lithium could be recovered as Li2CO_(3)with a purity of 99.55%.This work provided a new perspective on the preferentially selective extraction of lithium from spent lithium batteries.展开更多
基金supported by the National Natural Science Foundation of China, No. 30672774 and No. 81073152the Great Program of Science Foundation of Tianjin, No.10JCZDJC21100
文摘The alcohol and n-butanol extract of Potentilla anserine L. significantly protects myocardium from acute ischemic injury. However, its effects on rat hippocampal neurons and the mechanism of protection remain unclear. In this study, primary cultured hippocampal neurons from neonatal rats were incubated in 95% N2 and 5% CO2 for 4 hours. Results indicated that hypoxic injury decreased the viability of neurons, increased the expression levels of caspase-9 and caspase-3 mRNA, as well as cytochrome c, Caspase-9, and Caspase-3 protein. Pretreatment with 0.25, 0.062 5, 0.015 6 mg/mL n-butanol extract of Potentilla anserine L. led to a significant increase in cell viability. Expression levels of caspase-9 and caspase-3 mRNA, as well as cytochrome c, Caspase-9, and Caspase-3 protein, were attenuated. The neuroprotective effect of n-butanol extract of Potentilla anserine L. was equivalent to tanshinone IIA. Our data suggest that the n-butanol extract of Potentilla anserine L. could protect primary hippocampal neurons from hypoxic injury by deactivating mitochondrial cell death.
文摘Preliminary work by our research team revealed that Schisandra, a renowned traditional Chinese medicine, causes learning and memory improvements in ovariectomized mice. This activity was attributed to active ingredients extracted with N-butyl alcohol, named Schisandra N-butanol extract. In this study, ovariectomized mice were pretreated with Schisandra N-butanol extract given by intragastric administration. This treatment led to the enhancement of learning, and an increase in hippocampal CA1 synaptic, surface and postsynaptic density. A decrease in the average size of the synaptic active zone was also observed. These experimental findings showing that Schisandra N-butanol extract improved synaptic morphology indicate an underlying mechanism by which the ability of learning is enhanced in ovariectomized mice.
基金Supported by Guangxi First-class Discipline Construction Project(2018xk0602019xk105)+2 种基金Open Project of Guangxi Key Laboratory of Zhuang and Yao Medicine(GXZYKF2019-2,GXZYKF2022-11)Research Project of Guangxi Key Laboratory of Pharmacodynamic Research of Traditional Chinese Medicine(19-050-39-A6)Program of Key Laboratory for Purification and Quality Analysis of TCM Extraction in Guangxi Universities(Gui Jiao Ke Yan[2014]No.6).
文摘[Objectives]To study the protective effect and mechanism of n-butanol extract of Diploclisia glaucescens(B1.)Diels on rats with adjuvant arthritis.[Methods]A rat adjuvant arthritis(AA)model with similarities to a clinical RA(rheumatoid arthritis)patient was used,and the model was made by injection of Complete Freund s adjuvant(CFA).Body mass and joint swelling degree were used as indicators,and the organ index was calculated and the synovial tissue of rats was examined under microscope to evaluate the protective effect of n-butanol extract on arthritis.The effects of n-butanol extract on TNF-α,IL-1βand PGE_(2)contents in rat serum were detected by ELISA kit.[Results]Arthritic rats experienced significant weight loss;the n-butanol extract reduced the joint swelling in rats.It exerted an effect on rat organs and reduced the contents of TNF-α,IL-1βand PGE_(2) in rat serum,and also reduced synovial inflammation in rats.[Conclusions]The n-butanol extract of D.glaucescens can protect rats with adjuvant arthritis by reducing the content of inflammatory factors.
基金financially supported by University Grant Commission(UGC)New Delhi,India(Grant No:F.41-1289/2012(SR)/dt.26.07.2012)
文摘The herb Butea monosperma constitutes several human health beneficial components, which are mostly studied for their anticancer effects. In this study, the activity of n-butanol fractions of B. monosperma floral extract was examined on inhibiting aberrant crypt foci(ACF) formation in azoxymethane induced Wistar albino rats. The n-butanol extracts(150 mg/kg) decreased the ACF formation(per rat) by 92% and78% in short- and long-term in vivo treatments, respectively. All the compounds in the n-butanol extract were isolated and purified using column and reverse-phase high pressure liquid chromatography(HPLC).Their structures were characterized using UV–visible spectroscopy, nuclear magnetic resonance(NMR)and electrospray–ionisation mass spectrometry(ESI–MS) to determine important flavonoids, namely isocoreopsin, butrin and isobutrin. These compounds were studied for their free radical scavenging and anticancer activities. The compound isocoreopsin showed significantly greater efficacy in cell death on human colon and liver cancer cell lines(50 μg/m L in HT-29 and 100 μg/m L in Hep G2) than butrin(100 μg/m L in HT-29 and 500 μg/m L in Hep G2) and isobutrin(80 μg/m L in HT-29 and 150 μg/m L in Hep G2). These results suggest that isocoreopsin, butrin and isobutrin are the important key compounds for the chemoprevention of colon cancer and isocoreopsin can be considered as a promising novel drug.
基金financially supported by the National Natural Science Foundation of China(No.52203209)the State Key Laboratory of Solid Waste Reuse for Building Materials,China(No.SWR-2022-009)the Fundamental Research Funds for the Central Universities,China(No.FRF-IDRY22-012)。
文摘Silver nanoparticles(Ag NPs)have attracted attention in the field of biomaterials due to their excellent antibacterial property.However,the reducing and stabilizing agents used for the chemical reduction of Ag NPs are usually toxic and may cause water pollution.In this work,Ag NPs(31.2 nm in diameter)were prepared using the extract of straw,an agricultural waste,as the reducing and stabilizing agent.Experimental analysis revealed that the straw extract contained lignin,the structure of which possesses phenolic hydroxyl and methoxy groups that facilitate the reduction of silver salts into Ag NPs.The surfaces of Ag NPs were negatively charged due to the encapsulation of a thin layer of lignin molecules that prevented their aggregation.After the prepared Ag NPs were added to the precursor solution of acrylamide,free radical polymerization was triggered without the need for extra heating or light irradiation,resulting in the rapid formation of an Ag NP-polyacrylamide composite hydrogel.The inhibition zone test proved that the composite hydrogel possessed excellent antibacterial ability due to the presence of Ag NPs.The prepared hydrogel may have potential applications in the fabrication of biomedical materials,such as antibacterial dressings.
基金supported by the Key Research and Development Program of Hunan Province of China(No.2022NK2036)Xiangxi Prefecture Science and Technology Plan Project"School-Local Integration"Special Project(No.2022001)the scientific research project of Hunan Provincial Department of Education(No.22B0520).
文摘Background:Ampelopsis grossedentata,vine tea,which is the tea alternative beverages in China.In vine tea processing,a large amount of broken tea is produced,which has low commercial value.Methods:This study investigates the influence of different extraction methods(room temperature water extraction,boiling water extraction,ultrasonic-assisted room temperature water extraction,and ultrasonic-assisted boiling water extraction,referred to as room temperature water extraction(RE),boiling water extraction(BE),ultrasonic assistance at room temperature water extraction(URE),and ultrasonic assistance in boiling water extraction(UBE))on the yield,dihydromyricetin(DMY)content,free amino acid composition,volatile aroma components,and antioxidant properties of vine tea extracts.Results:A notable influence of extraction temperature on the yield of vine tea extracts(P<0.05),with BE yielding the highest at 43.13±0.26%,higher than that of RE(34.29±0.81%).Ultrasound-assisted extraction significantly increased the DMY content of the extracts(P<0.05),whereas DMY content in the RE extracts was 59.94±1.70%,that of URE reached 66.14±2.78%.Analysis revealed 17 amino acids,with L-serine and aspartic acid being the most abundant in the extracts,nevertheless ultrasound-assisted extraction reduced total free amino acid content.Gas chromatography-mass spectrometry analysis demonstrated an increase in the diversity and quantity of compounds in the vine tea water extracts obtained through ultrasonic-assisted extraction.Specifically,69 and 68 volatile compounds were found in URE and UBE extracts,which were higher than the number found in RE and BE extracts.In vitro,antioxidant activity assessments revealed varying antioxidant capacities among different extraction methods,with RE exhibiting the highest DPPH scavenging rate,URE leading in ABTS•+free radical scavenging,and BE demonstrating superior ferric ion reducing antioxidant activity.Conclusion:The findings suggest that extraction methods significantly influence the chemical composition and antioxidant properties of vine tea extracts.Ultrasonic-assisted extraction proved instrumental in elevating the DMY content in vine tea extracts,thereby enriching its flavor profile while maintaining its antioxidant properties.
基金supported by the National Natural Science Foundation of China(32202125)the Science and Technology Plan Project of Shaoxing City,China(2022A12003)the Zhejiang Provincial Natural Science Foundation,China(LY24C200004).
文摘This study investigated the use of raspberry extract(RBE) for mitigating ethyl carbamate(EC) accumulation in Chinese rice wine(Huangjiu), a traditional fermented beverage. It focused on the addition of RBE to the fermentation mash and its effects on EC levels. The results showed a significant reduction in EC production that could be attributed to RBE's role in altering urea and citrulline catabolism and inhibiting arginine metabolism, thus preventing EC precursors from reacting with ethanol. Additionally, RBE enhanced the rice wine's flavor profile, as shown by volatile component and amino acid analysis. This study also explored RBE's impact on the metabolism of arginine by Saccharomyces cerevisiae in a simulated fermentation environment, and found increased arginine, reduced urea and citrulline levels, altered enzyme activities, and gene expression changes in the arginine metabolism and transport pathways. In conclusion, the results clearly demonstrated RBE's efficacy in reducing the EC content in Chinese rice wine, offering valuable insights for EC reduction strategies.
基金Supported by Sichuan Science and Technology Program(No.23NSFSC0856).
文摘AIM:To evaluate the effect of femtosecond laser small incision lenticule extraction(SMILE)on the binocular visual function in myopic patients with glasses-free threedimensional(3D)technique.METHODS:Totally 50 myopic patients(39 females and 11 males)with SMILE were enrolled in this prospective study.The glasses-free 3D technique was used to evaluate the binocular visual function in these subjects including static stereopsis,dynamic stereopsis,foveal suppression,and binocular balance point of signal to noise ratio(s/n ratio).All subjects received measurements in 1d before operation,and 1d,1wk,and 1mo postoperatively.RESULTS:Both static and dynamic stereopsis showed no significant difference after SMILE.The foveal suppression improved significantly 1wk and 1mo after SMILE(P=0.005 and P=0.007 respectively).The binocular balance point of signal to noise ratio showed a significant improvement 1d,1wk and 1mo after SMILE for both eyes(P<0.001 for each eye respectively).CONCLUSION:Glasses-free 3D technique can be used to evaluate the effect of SMILE on the binocular visual function in myopic patients perceptively,and SMILE can improve both foveal suppression and binocular imbalance in these patients.
基金PROTEXTWOOD (ID 2202-102) funded through LabEx AGRO ANR-10-LABX-0001-01 (under ISiteUniversité de Montpellier framework)the project PANTHER2-Guyane funded through AgenceNationale de la Recherche (ANR-22-CE43-0019)+2 种基金Investissement d’Avenir” grant managed by Agence Nationale de la Recherche (CEBA, ref. ANR-10-LABX-25-01)supported by the FEDER (European Regional Development Fund)research project “EcovaloBois” (Project number: GY0015430)by the CNRS peps INSIS2018 research project “GuyavaloFibres”.
文摘The valorization of Amazonian wood residues into active chemical compounds could be an eco-friendly,cost-effective and valuable way to develop wood preservative formulations to enhance the decay and termite resistance of low-durable wood species.Wacapou(Vouacapoua americana.,Fabaceae)is a well-known Guianese wood spe-cies commonly used in local wood construction due to its outstanding natural durability,which results from the presence of a large panel of extractives compounds.In addition,its industrial processing generates large amounts of residues.Wacapou residues were extracted by maceration using four different solvents(water/ethanol,ethyl acetate,hexane and dichloromethane/methanol),separately and successively.The yield of each extractive fraction was determined,and their chemical compositions were analyzed by Liquid Chromatography-Mass Spectrometry(LC-MS).Ethyl acetate led to the highest extraction yield,and the active compounds were identified in the obtained extractive fraction.In this sense,the fungicidal and termite-repellent properties of these extractives were then tested using a screening laboratory(with temperate and tropical microorganisms),according to the solution concentration(1%,2.5%,5%,8%and 10%).Finally,Virola michelii Heckel wood samples(low durable species)were impregnated with the 8%concentration solution.The impregnated wood samples were then exposed to a soil bed test.The results highlighted that the nature of the solvent used during wood maceration affects the con-tent of the obtained extractive fractions.Ultra-Performance Liquid Chromatography–High-Resolution Mass Spectrometry(UHPLC-HRMS)analyses showed the influence of extraction parameters on the nature of the extracted molecules.Wacapou extracts(from ethyl acetate maceration)showed good anti-fungal and anti-termite activities.Additionally,the concentration in extractives had an impact on the anti-termite activity level for Reti-culitermesflavipes and Cryptotermes sp.Formulations based on Wacapou extractives showed a good potential for valorization in eco-friendly preservatives,aiming to confer better durability to local low-durability wood species.
基金This study was supported by the National Natural Science Foundation of China(U20A20148)the Major Science and Technology Projects of the Xizang(Tibet)Autonomous Region(XZ202201ZD0004G and XZ202201ZD0004G01).
文摘This research optimized the structure of lithium extraction solar ponds to enhance the crystallization rate and yield of Li_(2)CO_(3).Using the response surface methodology in Design-Expert 10.0.3,the authors conducted experiments to investigate the influence of four factors related to solar pond structure on the crystallization of Li_(2)CO_(3) and their pairwise interactions.Computational Fluid Dynamics(CFD)simulations of the flow field within the solar pond were performed using COMSOL Multiphysics software to compare temperature distributions before and after optimization.The results indicate that the optimal structure for lithium extraction from the Zabuye Salt Lake solar ponds includes UCZ(Upper Convective Zone)thickness of 53.63 cm,an LCZ(Lower Convective Zone)direct heating temperature of 57.39℃,a CO32−concentration of 32.21 g/L,and an added soda ash concentration of 6.52 g/L.Following this optimized pathway,the Li_(2)CO_(3) precipitation increased by 7.34% compared to the initial solar pond process,with a 33.33% improvement in lithium carbonate crystallization rate.This study demonstrates the feasibility of optimizing lithium extraction solar pond structures,offering a new approach for constructing such ponds in salt lakes.It provides valuable guidance for the efficient extraction of lithium resources from carbonate-type salt lake brines.
基金This research was jointly supported by the China Geological Survey Project(DD20211404)the Natural Science Foundation of Inner Mongolia Autonomous Region(2019LH05028).
文摘With the development of the new energy industry and the depletion of nickel sulfide ore resources,laterite nickel ore has become the main source of primary nickel,and nickel for power batteries has become a new growth point in consumption.This paper systematically summarizes the processes,parameters,products,recovery rates,environmental indicators,costs,advantages,disadvantages and the latest research progress of mainstream nickel extraction processes from laterite nickel ore.It also provides a comparative analysis of the environmental impact and economic efficiency of different nickel extraction processes.It is found that the current nickel extraction processes from laterite nickel ore globally for commercial production mainly include the RKEF process for producing ferronickel and the HPAL process for producing intermediate products.The former accounts for about 80%of laterite nickel ore production.Compared to each other,the investment cost per ton of nickel metal production capacity for the RKEF is about 43000$,with an operational cost of about 16000$per ton of nickel metal and a total nickel recovery rate of 77%–90%.Its products are mainly used in stainless steels.For the HPAL process,the investment cost per ton of nickel metal production capacity is about 56000$,with an operational cost of about 15000$per ton of nickel metal and a total nickel recovery rate of 83%–90%.Its products are mainly used in power batteries.The significant differences between the two lies in energy consumption and carbon emissions,with the RKEF being 2.18 and 2.37 times that of the HPAL,respectively.Although the use of clean energy can greatly reduce the operational cost and environmental impact of RKEF,if RKEF is converted to producing high Ni matte,its economic and environmental performance still cannot match that of the HPAL and oxygen-enriched side-blown processes.Therefore,it can be inferred that with the increasing demand for nickel in power batteries,HPAL and oxygen-enriched side blowing processes will play a greater role in laterite nickel extraction.
基金Supported by the Innovation Fund of Tianjin University
文摘A new reactive and extractive distillation process with ionic liquids as entrainer and catalyst (RED-IL)was proposed to produce methanol and n-butyl acetate by transesterification reaction of methyl acetate with n-butanol. The RED-IL process was simulated via a rigorous model, and high purity products of methanol and n-butyl acetate can be obtained in such a process. The effects of reflux ratio, feed mode, holdup, feed location, entrainer ratio and catalyst concentration on RED-IL process were investigated. The conversion of methyl acetate and purities of products increase with the holdup in column, entrainer ratio and catalyst content. An optimal reflux ratio exists in RED-IL process. Comparing to the mixed-feed mode, the segregated-feed mode is more effective, in which the optimal feed locations of reactants exist.
基金Supported by the National Key Technology Support Program of China(2014BAC10B01)the National Natural Science Foundation of China(21406123)the Key Scientific and Technological Project of Shanxi Province(MH2014-10)
文摘In many chemical processes, large amounts of wastewater containing butanol and isobutanol are produced.Given that n-butanol-isobutanol-water can form triple azeotrope, high-purity butanol cannot be recovered from the wastewater by ordinary distillation. To economically and effectively recover butanol from this kind of wastewater, 1,4-butanediol is selected as an extractant to break the formation of the azeotropes, and a doubleeffect extractive distillation process is proposed. The conceptual design of the proposed process is accomplished based on process simulation. With the proposed process, the purity of recovered butanol and water is greater than 99.99 wt%. In comparison with the conventional azeotropic distillation process, economic analysis shows that the operating cost of the proposed process is lower: when the capacity of wastewater treatment is 100 t·h^(-1), the total operating cost decreases by 5.385 ×10~6 USD per year, and the total annual cost of the new process decreases by 5.249 ×10~6 USD per year. In addition, in the extractive distillation system, variable effects on separation purities and cost are more complex than those in the ordinary distillation system. The method and steps to optimize the key variables of the extractive distillation system are also discussed in this paper and can provide reference for similar studies.
基金funded by the National Key Research and Development Program of China(2022YFA1304201)the Beijing Natural Science Foundation(6222032)+2 种基金the Starting Grants Program for Young Talents at China Agricultural Universitythe 2115 Talent Development Program of China Agricultural UniversityChinese Universities Scientific Fund。
文摘Background Ginkgo biloba extract(GBE)is evidenced to be effective in the prevention and alleviation of metabolic disorders,including obesity,diabetes and fatty liver disease.However,the role of GBE in alleviating fatty liver hemorrhagic syndrome(FLHS)in laying hens and the underlying mechanisms remain to be elucidated.Here,we investigated the effects of GBE on relieving FLHS with an emphasis on the modulatory role of GBE in chicken gut microbiota.Results The results showed that GBE treatment ameliorated biochemical blood indicators in high-fat diet(HFD)-induced FLHS laying hen model by decreasing the levels of TG,TC,ALT and ALP.The lipid accumulation and pathological score of liver were also relieved after GBE treatment.Moreover,GBE treatment enhanced the antioxidant activity of liver and serum by increasing GSH,SOD,T-AOC,GSH-PX and reducing MDA,and downregulated the expression of genes related to lipid synthesis(FAS,LXRα,GPAT1,PPARγand Ch REBP1)and inflammatory cytokines(TNF-α,IL-6,TLR4 and NF-κB)in the liver.Microbial profiling analysis revealed that GBE treatment reshaped the HFD-perturbed gut microbiota,particularly elevated the abundance of Megasphaera in the cecum.Meanwhile,targeted metabolomic analysis of SCFAs revealed that GBE treatment significantly promoted the production of total SCFAs,acetate and propionate,which were positively correlated with the GBE-enriched gut microbiota.Finally,we confirmed that the GBE-altered gut microbiota was sufficient to alleviate FLHS by fecal microbiota transplantation(FMT).Conclusions We provided evidence that GBE alleviated FLHS in HFD-induced laying hens through reshaping the composition of gut microbiota.Our findings shed light on mechanism underlying the anti-FLHS efficacy of GBE and lay foundations for future use of GBE as additive to prevent and control FLHS in laying hen industry.
基金financially supported by the National Key Research and Development Program of China(2021YFD2100904)the National Natural Science Foundation of China(31871729,32172147)+2 种基金the Modern Agriculture key Project of Jiangsu Province of China(BE2022317)the Modern Agricultural Industrial Technology System Construction Project of Jiangsu Province of China(JATS[2021]522)a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)。
文摘Active ingredients from highland barley have received considerable attention as natural products for developing treatments and dietary supplements against obesity.In practical application,the research of food combinations is more significant than a specific food component.This study investigated the lipid-lowering effect of highland barley polyphenols via lipase assay in vitro and HepG2 cells induced by oleic acid(OA).Five indexes,triglyceride(TG),total cholesterol(T-CHO),low density lipoprotein-cholesterol(LDL-C),aspartate aminotransferase(AST),and alanine aminotransferase(ALT),were used to evaluate the lipidlowering effect of highland barley extract.We also preliminary studied the lipid-lowering mechanism by Realtime fluorescent quantitative polymerase chain reaction(q PCR).The results indicated that highland barley extract contains many components with lipid-lowering effects,such as hyperoside and scoparone.In vitro,the lipase assay showed an 18.4%lipase inhibition rate when the additive contents of highland barley extract were 100μg/m L.The intracellular lipid-lowering effect of highland barley extract was examined using 0.25 mmol/L OA-induced HepG2 cells.The results showed that intracellular TG,LDL-C,and T-CHO content decreased by 34.4%,51.2%,and 18.4%,respectively.ALT and AST decreased by 51.6%and 20.7%compared with the untreated hyperlipidemic HepG2 cells.q PCR results showed that highland barley polyphenols could up-regulation the expression of lipid metabolism-related genes such as PPARγand Fabp4.
文摘Condensed and hydrolysable tannins are non-toxic natural polyphenols that are a commercial commodity industrialized for tanning hides to obtain leather and for a growing number of other industrial applications mainly to substitute petroleum-based products.They are a definite class of sustainable materials of the forestry industry.They have been in operation for hundreds of years to manufacture leather and now for a growing number of applications in a variety of other industries,such as wood adhesives,metal coating,pharmaceutical/medical applications and several others.This review presents the main sources,either already or potentially commercial of this forestry by-materials,their industrial and laboratory extraction systems,their systems of analysis with their advantages and drawbacks,be these methods so simple to even appear primitive but nonetheless of proven effectiveness,or very modern and instrumental.It constitutes a basic but essential summary of what is necessary to know of these sustainable materials.In doing so,the review highlights some of the main challenges that remain to be addressed to deliver the quality and economics of tannin supply necessary to fulfill the industrial production requirements for some materials-based uses.
文摘A large number of network security breaches in IoT networks have demonstrated the unreliability of current Network Intrusion Detection Systems(NIDSs).Consequently,network interruptions and loss of sensitive data have occurred,which led to an active research area for improving NIDS technologies.In an analysis of related works,it was observed that most researchers aim to obtain better classification results by using a set of untried combinations of Feature Reduction(FR)and Machine Learning(ML)techniques on NIDS datasets.However,these datasets are different in feature sets,attack types,and network design.Therefore,this paper aims to discover whether these techniques can be generalised across various datasets.Six ML models are utilised:a Deep Feed Forward(DFF),Convolutional Neural Network(CNN),Recurrent Neural Network(RNN),Decision Tree(DT),Logistic Regression(LR),and Naive Bayes(NB).The accuracy of three Feature Extraction(FE)algorithms is detected;Principal Component Analysis(PCA),Auto-encoder(AE),and Linear Discriminant Analysis(LDA),are evaluated using three benchmark datasets:UNSW-NB15,ToN-IoT and CSE-CIC-IDS2018.Although PCA and AE algorithms have been widely used,the determination of their optimal number of extracted dimensions has been overlooked.The results indicate that no clear FE method or ML model can achieve the best scores for all datasets.The optimal number of extracted dimensions has been identified for each dataset,and LDA degrades the performance of the ML models on two datasets.The variance is used to analyse the extracted dimensions of LDA and PCA.Finally,this paper concludes that the choice of datasets significantly alters the performance of the applied techniques.We believe that a universal(benchmark)feature set is needed to facilitate further advancement and progress of research in this field.
文摘AIM:To review recent innovations,challenges,and applications of small incision lenticule extraction(SMILE)extracted lenticule for treating ocular disorders.METHODS:A literature review was performed in the PubMed database,which was last updated on 30 December 2021.There was no limit regarding language.The authors evaluated the reference lists of the collected papers to find any relevant research.RESULTS:Due to the simplicity and accuracy of modern femtosecond lasers and the extensive development of SMILE surgery,many healthy human corneal stromal lenticules were extracted during surgery,motivating some professionals to investigate the SMILE lenticule reusability in different ocular disorders.In addition,new approaches had been developed to preserve,modify,and bioengineer the corneal stroma,leading to the optimal use of discarded byproducts such as lenticules from SMILE surgery.The lenticules can be effectively re-implanted into the autologous or allogenic corneas of human subjects to treat refractive errors,corneal ectasia,and corneal perforation and serve as a patch graft for glaucoma drainage devices with better cosmetic outcomes.CONCLUSION:SMILE-extracted lenticules could be a viable alternative to human donor corneal tissue.
基金financially supported by National Natural Science Foundation of China(No.52274171)Joint National-Local Engineering Research Centre for Safe and Precise Coal Mining Fund(No.EC2023015)+1 种基金Excellent Youth Project of Universities in Anhui Province(No.2023AH030042)Unveiled List of Bidding Projects of Shanxi Province(No.20201101001)。
文摘Chemical solvents instead of pure water being as hydraulic fracturing fluid could effectively increase permeability and improve clean methane extraction efficiency.However,pore-fracture variation features of lean coal synergistically affected by solvents have not been fully understood.Ultrasonic testing,nuclear magnetic resonance analysis,liquid phase mass spectrometry was adopted to comprehensively analyze pore-fracture change characteristics of lean coal treated by combined solvent(NMP and CS_(2)).Meanwhile,quantitative characterization of above changing properties was conducted using geometric fractal theory.Relationship model between permeability,fractal dimension and porosity were established.Results indicate that the end face fractures of coal are well developed after CS2and combined solvent treatments,of which,end face box-counting fractal dimensions range from 1.1227 to 1.4767.Maximum decreases in ultrasonic longitudinal wave velocity of coal affected by NMP,CS_(2)and combined solvent are 2.700%,20.521%,22.454%,respectively.Solvent treatments could lead to increasing amount of both mesopores and macropores.Decrease ratio of fractal dimension Dsis 0.259%–2.159%,while permeability increases ratio of NMR ranges from 0.1904 to 6.4486.Meanwhile,combined solvent could dissolve coal polar and non-polar small molecules and expand flow space.Results could provide reference for solvent selection and parameter optimization of permeability-enhancement technology.
基金the Science and Technology Key Project of Anhui Province,China(No.2022e03020004).
文摘Lithium recovery from spent lithium-ion batteries(LIBs)have attracted extensive attention due to the skyrocketing price of lithium.The medium-temperature carbon reduction roasting was proposed to preferential selective extraction of lithium from spent Li-CoO_(2)(LCO)cathodes to overcome the incomplete recovery and loss of lithium during the recycling process.The LCO layered structure was destroyed and lithium was completely converted into water-soluble Li2CO_(3)under a suitable temperature to control the reduced state of the cobalt oxide.The Co metal agglomerates generated during medium-temperature carbon reduction roasting were broken by wet grinding and ultrasonic crushing to release the entrained lithium.The results showed that 99.10%of the whole lithium could be recovered as Li2CO_(3)with a purity of 99.55%.This work provided a new perspective on the preferentially selective extraction of lithium from spent lithium batteries.