期刊文献+
共找到185篇文章
< 1 2 10 >
每页显示 20 50 100
High-efficiency sodium storage of Co_(0.85)Se/WSe_(2) encapsulated in N-doped carbon polyhedron via vacancy and heterojunction engineering 被引量:3
1
作者 Ya Ru Pei Hong Yu Zhou +5 位作者 Ming Zhao Jian Chen Li Xin Ge Wei Zhang Chun Cheng Yang Qing Jiang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第1期94-107,共14页
With the advantage of fast charge transfer,heterojunction engineering is identified as a viable method to reinforce the anodes'sodium storage performance.Also,vacancies can effectively strengthen the Na+adsorption... With the advantage of fast charge transfer,heterojunction engineering is identified as a viable method to reinforce the anodes'sodium storage performance.Also,vacancies can effectively strengthen the Na+adsorption ability and provide extra active sites for Na+adsorption.However,their synchronous engineering is rarely reported.Herein,a hybrid of Co_(0.85)Se/WSe_(2) heterostructure with Se vacancies and N-doped carbon polyhedron(CoWSe/NCP)has been fabricated for the first time via a hydrothermal and subsequent selenization strategy.Spherical aberration-corrected transmission electron microscopy confirms the phase interface of the Co_(0.85)Se/WSe_(2) heterostructure and the existence of Se vacancies.Density functional theory simulations reveal the accelerated charge transfer and enhanced Na+adsorption ability,which are contributed by the Co_(0.85)Se/WSe_(2) heterostructure and Se vacancies,respectively.As expected,the CoWSe/NCP anode in sodium-ion battery achieves outstanding rate capability(339.6 mAh g^(−1) at 20 A g^(−1)),outperforming almost all Co/W-based selenides. 展开更多
关键词 Co_(0.85)Se/WSe_(2)heterostructure density functional theory simulations n-doped carbon polyhedron Se vacancies sodium-ion batteries
下载PDF
Template-Induced Graphitic Nanodomains in Nitrogen-Doped Carbons Enable High-Performance Sodium-Ion Capacitors
2
作者 Chun Li Zihan Song +6 位作者 Minliang Liu Enrico Lepre Markus Antonietti Junwu Zhu Jian Liu Yongsheng Fu Nieves López-Salas 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第4期295-303,共9页
Sodium-ion capacitors(SICs)have great potential in energy storage due to their low cost,the abundance of Na,and the potential to deliver high energy and power simultaneously.This article demonstrates a template-assist... Sodium-ion capacitors(SICs)have great potential in energy storage due to their low cost,the abundance of Na,and the potential to deliver high energy and power simultaneously.This article demonstrates a template-assisted method to induce graphitic nanodomains and micro-mesopores into nitrogen-doped carbons.This study elucidates that these graphitic nanodomains are beneficial for Na+storage.The obtained N-doped carbon(As8Mg)electrode achieved a reversible capacity of 254 mA h g^(-1)at 0.1 A g^(-1).Moreover,the As8Mg-based SIC device achieves high combinations of power/energy densities(53 W kg^(-1)at 224 Wh kg^(-1)and 10410 W kg^(-1)at 51 Wh kg^(-1))with outstanding cycle stability(99.7%retention over 600 cycles at 0.2 A g^(-1)).Our findings provide insights into optimizing carbon’s microstructure to boost sodium storage in the pseudocapacitive mode. 展开更多
关键词 ANODE graphitic nanodomains n-doped carbons sodium-ion capacitor TEMPLATE
下载PDF
Enhanced stability of nitrogen-doped carbon-supported palladium catalyst for oxidative carbonylation of phenol
3
作者 Xiaojing Liu Ruohan Zhao +4 位作者 Hao Zhao Zhimiao Wang Fang Li Wei Xue Yanji Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期19-28,共10页
Enhancing the stability of supported noble metal catalysts emerges is a major challenge in both science and industry.Herein,a heterogeneous Pd catalyst(Pd/NCF)was prepared by supporting Pd ultrafine metal nanoparticle... Enhancing the stability of supported noble metal catalysts emerges is a major challenge in both science and industry.Herein,a heterogeneous Pd catalyst(Pd/NCF)was prepared by supporting Pd ultrafine metal nanoparticles(NPs)on nitrogen-doped carbon;synthesized by using F127 as a stabilizer,as well as chitosan as a carbon and nitrogen source.The Pd/NCF catalyst was efficient and recyclable for oxidative carbonylation of phenol to diphenyl carbonate,exhibiting higher stability than Pd/NC prepared without F127 addition.The hydrogen bond between chitosan(CTS)and F127 was enhanced by F127,which anchored the N in the free amino group,increasing the N content of the carbon material and ensuring that the support could provide sufficient N sites for the deposition of Pd NPs.This process helped to improve metal dispersion.The increased metal-support interaction,which limits the leaching and coarsening of Pd NPs,improves the stability of the Pd/NCF catalyst.Furthermore,density functional theory calculations indicated that pyridine N stabilized the Pd^(2+)species,significantly inhibiting the loss of Pd^(2+)in Pd/NCF during the reaction process.This work provides a promising avenue towards enhancing the stability of nitrogen-doped carbon-supported metal catalysts. 展开更多
关键词 Supported Pd catalyst n-doped carbon Amphiphilic triblock copolymer Pyridinic nitrogen STABILITY
下载PDF
Oxidation Evolution and Activity Origin of N-Doped Carbon in the Oxygen Reduction Reaction
4
作者 Jiaqi Wu Chuanqi Cheng +2 位作者 Shanshan Lu Bin Zhang Yanmei Shi 《Transactions of Tianjin University》 EI CAS 2024年第4期369-379,共11页
N-doped carbon materials,with their applications as electrocatalysts for the oxygen reduction reaction(ORR),have been extensively studied.However,a negletcted fact is that the operating potential of the ORR is higher ... N-doped carbon materials,with their applications as electrocatalysts for the oxygen reduction reaction(ORR),have been extensively studied.However,a negletcted fact is that the operating potential of the ORR is higher than the theoretical oxida-tion potential of carbon,possibly leading to the oxidation of carbon materials.Consequently,the infl uence of the structural oxidation evolution on ORR performance and the real active sites are not clear.In this study,we discover a two-step oxida-tion process of N-doped carbon during the ORR.The fi rst oxidation process is caused by the applied potential and bubbling oxygen during the ORR,leading to the oxidative dissolution of N and the formation of abundant oxygen-containing functional groups.This oxidation process also converts the reaction path from the four-electron(4e)ORR to the two-electron(2e)ORR.Subsequently,the enhanced 2e ORR generates oxidative H_(2)O_(2),which initiates the second stage of oxidation to some newly formed oxygen-containing functional groups,such as quinones to dicarboxyls,further diversifying the oxygen-containing functional groups and making carboxyl groups as the dominant species.We also reveal the synergistic eff ect of multiple oxygen-containing functional groups by providing additional opportunities to access active sites with optimized adsorption of OOH*,thus leading to high effi ciency and durability in electrocatalytic H_(2)O_(2) production. 展开更多
关键词 Oxygen reduction reaction n-doped carbon Reaction path Structural evolution Oxidation in reduction
下载PDF
Engineering single-atom Mn on nitrogen-doped carbon to regulate lithium-peroxide reaction kinetics for rechargeable lithium-oxygen batteries
5
作者 Yaling Huang Yong Liu +3 位作者 Yang Liu Chenyang Zhang Wenzhang Li Jie Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期199-207,共9页
Precision engineering of catalytic sites to guide more favorable pathways for Li_(2)O_(2) nucleation and decom-position represents an enticing kinetic strategy for mitigating overpotential,enhancing discharge capac-it... Precision engineering of catalytic sites to guide more favorable pathways for Li_(2)O_(2) nucleation and decom-position represents an enticing kinetic strategy for mitigating overpotential,enhancing discharge capac-ity,and improving recycling stability of Li-O_(2) batteries.In this work,we employ metal-organic frameworks(MOFs)derivation and ion substitution strategies to construct atomically dispersed Mn-N_(4) moieties on hierarchical porous nitrogen-doped carbon(Mn SAs-NC)with the aim of reducing the over-potential and improving the cycling stability of Li-O_(2) batteries.The porous structure provides more chan-nels for mass transfer and exposes more highly active sites for electrocatalytic reactions,thus promoting the formation and decomposition of Li_(2)O_(2).The Li-O_(2) batteries with Mn SAs-NC cathode achieve lower overpotential,higher specific capacity(14290 mA h g^(-1) at 100 mAg^(-1)),and superior cycle stability(>100 cycles at 200 mA g^(-1))compared with the Mn NPs-NC and NC.Density functional theory(DFT)cal-culations reveal that the construction of Mn-N_(4) moiety tunes the charge distribution of the pyridinic N-rich vacancy and balances the affinity of the intermediates(LiO_(2) and Li_(2)O_(2)).The initial nucleation of Li_(2)O_(2) on Mn SAs-NC favors the O_(2)-→LiO_(2)→Li_(2)O_(2) surface-adsorption pathway,which mitigates the overpoten-tials of the oxygen reduction(ORR)and oxygen evolution reaction(OER).As a result,Mn SAs-NC with Mn-N_(4) moiety effectively facilitates the Li_(2)O_(2) nucleation and enables its reversible decomposition.This work establishes a methodology for constructing carbon-based electrocatalysts with high activity and selectivity for Li-O_(2)batteries. 展开更多
关键词 Single-atom Mn MOFs-oriented architecture Rechargeable Li-O_(2)battery n-doped carbon Density functional theory calculation
下载PDF
Insight to the enhanced microwave absorption of porous N-doped carbon driven by ZIF-8:Competition between graphitization and porosity 被引量:3
6
作者 You Zhou Hongpeng Wang +7 位作者 Dan Wang Xianfeng Yang Hongna Xing Juan Feng Yan Zong Xiuhong Zhu Xinghua Li Xinliang Zheng 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第3期474-484,共11页
Porous carbon-based materials are promised to be lightweight dielectric microwave absorbents.Deeply understanding the influence of graphitization grade and porous structure on the dielectric parameters is urgently req... Porous carbon-based materials are promised to be lightweight dielectric microwave absorbents.Deeply understanding the influence of graphitization grade and porous structure on the dielectric parameters is urgently required.Herein,utilizing the low boiling point of Zn,porous N-doped carbon was fabricated by carbonization of ZIF-8(Zn)at different temperature,and the microwave absorption performance was investigated.The porous N-doped carbon inherits the high porosity of ZIF-8 precursor.By increasing the carbonization temperature,the contents of Zn and N elements are decreased;the graphitization degree is improved;however,the specific surface area and porosity are increased first and then decreased.When the carbonization temperature is 1000°C,the porous N-doped carbon behaves enhanced microwave absorption.With an ultrathin thickness of 1.29 mm,the ideal RL reaches-50.57 dB at 16.95 GHz and the effective absorption bandwidth is 4.17 GHz.The mechanism of boosted microwave absorption is ascribed to the competition of graphitization and porosity as well as N dopants,resulting in high dielectric loss capacity and good impedance matching.The porous structure can prolong the pathways and raise the contact opportunity between microwaves and porous carbon,causing multiple scattering,interface polarization,and improved impedance matching.Besides,the N dopants can induce electron polarization and defect polarization.These results give a new insight to construct lightweight carbon-based microwave absorbents by regulating the graphitization and porosity. 展开更多
关键词 n-doped carbon POROSITY dielectric impedance matching microwave absorption
下载PDF
Highly N-doped carbon with low graphitic-N content as anode material for enhanced initial Coulombic efficiency of lithium-ion batteries 被引量:3
7
作者 Yihua Tang Jingjing Chen +2 位作者 Zhiyong Mao Christina Roth Dajian Wang 《Carbon Energy》 SCIE CSCD 2023年第2期236-249,共14页
N-doped carbons as one of the most prominent anode materials to replace standard graphite exhibit outstanding Li+storage performance.However,N-doped carbon anodes still suffer from low N-doping levels and low initial ... N-doped carbons as one of the most prominent anode materials to replace standard graphite exhibit outstanding Li+storage performance.However,N-doped carbon anodes still suffer from low N-doping levels and low initial Coulombic efficiency(ICE).In this study,high N-doped and low graphitic-N carbons(LGNCs)with enhanced ICE were synthesized by taking advantage of a denitrification strategy for graphitic carbon nitride(g-C_(3)N_(4)).In brief,more than 14.5 at%of N from g-C_(3)N_(4)(55.1 at%N)was retained by reacting graphitic-N with lithium,which was subsequently removed.As graphitic-N is largely responsible for the irreversible capacity,the anode's performance was significantly increased.Compared to general N-doped carbons with high graphitic-N proportion(>50%)and low N content(<15 at%),LGNCs delivered a low proportion of 10.8%-17.2% within the high N-doping content of 14.5-42.7 at%,leading to an enhanced specific capacity of 1499.9mAh g^(-1) at an ICE of 93.7% for the optimal sample of LGNC(4:1).This study provides a facile strategy to control the N content and speciation,achieving both high Li+storage capacity and high ICE,and thus promoting research and application of N-doped carbon materials. 展开更多
关键词 DENITRIFICATION graphitic carbon nitride graphitic-N lithium-ion batteries n-doped carbon
下载PDF
Ionic porous polyamide derived N-doped carbon towards highly selective electroreduction of CO_(2) 被引量:1
8
作者 Mingdong Sun Dongxin Pan +3 位作者 Tingting Ye Jing Gu Yu Zhou Jun Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第3期212-221,共10页
Electrochemical CO_(2) reduction reaction(CO_(2) RR) has attracted growing attention in energy storage and sustainable production of fuels and chemicals. N-doped carbon materials are preferred metal-free electrocataly... Electrochemical CO_(2) reduction reaction(CO_(2) RR) has attracted growing attention in energy storage and sustainable production of fuels and chemicals. N-doped carbon materials are preferred metal-free electrocatalysts, but it remains one challenge to finely engineer the active sites and porosity. Herein, we demonstrated that ionic porous polyamides were a kind of versatile precursors to prepare functional carbon materials in a one-step pyrolysis process. The polyamide precursors allowed the maintenance of abundant N species at high temperatures. The existence of ionic moieties and large specific surface area of the precursors promoted the formation of larger porosity carbon with a large specific surface area and sufficient active graphitic-N species by controlling the pyrolysis temperature. The catalyst was highly selective in the CO_(2) RR to produce CO with a maximum Faraday efficiency above 99%, attributable to the improved mass transfer in a large porosity system. This work shows that ionic polyamides are promising carbon precursors for the fabrication of metal-free electrocatalysts for CO_(2) RR. 展开更多
关键词 carbon dioxide ELECTROCHEMISTRY Reduction Ionic mesoporous polyamide n-doped carbon material
下载PDF
Unraveling the Role of Nitrogen-Doped Carbon Nanowires Incorporated with MnO_(2)Nanosheets as High Performance Cathode for Zinc-Ion Batteries 被引量:2
9
作者 Xiaohui Li Qiancheng Zhou +5 位作者 Ze Yang Xing Zhou Dan Qiu Huajun Qiu Xintang Huang Ying Yu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第3期205-213,共9页
Manganese-based cathode materials are considered as a promising candidate for rechargeable aqueous zinc-ion batteries(ZIBs).Suffering from poor conductive and limited structure tolerance,various carbon matrix,especial... Manganese-based cathode materials are considered as a promising candidate for rechargeable aqueous zinc-ion batteries(ZIBs).Suffering from poor conductive and limited structure tolerance,various carbon matrix,especially N-doped carbon,were employed to incorporate with MnO_(2)for greatly promoted electrochemical performances.However,the related underlying mechanism is still unknown,which is unfavorable to guide the design of high performance electrode.Herein,by incorporating layered MnO_(2)with N-doped carbon nanowires,a free-standing cathode with hierarchical core-shell structure(denoted as MnO_(2)@NC)is prepared.Benefiting from the N-doped carbon and rational architecture,the MnO_(2)@NC electrode shows an enhanced specific capacity(325 mAh g^(−1)at 0.1 A g^(−1))and rate performance(90 mAh g^(−1)at 2 A g^(−1)),as well as improved cycling stability.Furthermore,the performance improvement mechanism of MnO_(2)incorporated by N-doped carbon is investigated by X-ray photoelectron spectroscopy(XPS),Raman spectrums and density functional theory(DFT)calculation.The N atom elongates the Mn-O bond and reduces the valence of Mn^(4+)ion in MnO_(2)crystal by delocalizing its electron clouds.Thus,the electrostatic repulsion will be weakened when Zn^(2+)/H^(+)insert into the host MnO_(2)lattices,which is profitable to more cation insertion and faster ion transfer kinetics for higher capacity and rate capability.This work elucidates a fundamental understanding of the functions of N-doped carbon in composite materials and shed light on a practical pathway to optimize other electrode materials. 展开更多
关键词 core-shell nanostructure MnO_(2)nanosheets n-doped carbon Zn ion batteries
下载PDF
N-Doped rGO-Like Carbon Prepared from Coconut Shell:Structure and Specific Capacitance 被引量:1
10
作者 Imam Khambali Budhi Priyanto +8 位作者 Retno Asih Malik Anjelh Baqiya Muhammad Mahyiddin Ramli Nurul Huda Osman Sarayut Tunmee Hideki Nakajima Triwikantoro Mochamad Zainuri Darminto 《Journal of Renewable Materials》 SCIE EI 2023年第4期1823-1833,共11页
An rGO−like carbon compound has been synthesized from biomass,i.e.,old coconut shell,by a carbonization process followed by heating at 400°C for 5 h.The nitrogen doping was achieved by adding the urea(CH4N2O)and ... An rGO−like carbon compound has been synthesized from biomass,i.e.,old coconut shell,by a carbonization process followed by heating at 400°C for 5 h.The nitrogen doping was achieved by adding the urea(CH4N2O)and stirring at 70°C for 14 h.The morphology and structure of the rGO-like carbon were investigated by electron microscopies and Raman spectroscopy.The presence of C-N functional groups was analyzed by Fourier transform infrared and synchrotron X-ray photoemission spectroscopy,while the particle and the specific capacitance were measured by particle sizer and cyclic voltammetry.The highest specific capacitance of 72.78 F/g is achieved by the sample with 20%urea,having the smallest particles size and the largest surface area.The corresponding sample has shown to be constituted by the appropriate amount of C–N pyrrolic and pyridinic defects. 展开更多
关键词 n-doped rGO−like carbon coconut shell specific capacitance
下载PDF
Three-Dimensional N-Doped Carbon Nanotube/Graphene Composite Aerogel Anode to Develop High-Power Microbial Fuel Cell 被引量:1
11
作者 Shixuan Jin Yiyu Feng +10 位作者 Jichao Jia Fulai Zhao Zijie Wu Peng Long Feng Li Huitao Yu Chi Yang Qijing Liu Baocai Zhang Hao Song Wei Feng 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第3期161-169,共9页
Optimizing the structure of electrode materials is one of the most effective strategies for designing high-power microbial fuel cells(MFCs).However,electrode materials currently suffer from a series of shortcomings th... Optimizing the structure of electrode materials is one of the most effective strategies for designing high-power microbial fuel cells(MFCs).However,electrode materials currently suffer from a series of shortcomings that limit the output of MFCs,such as high intrinsic resistance,poor electrolyte wettability,and low microbial load capacity.Here,a three-dimensional(3D)nitrogen-doped multiwalled carbon nanotube/graphene(N-MWCNT/GA)composite aerogel is synthesized as the anode for MFCs.Comparing nitrogen-doped GA,MWCNT/GA,and N-MWCNT/GA,the macroporous hydrophilic N-MWCNT/GA electrode with an average pore size of 4.24μm enables high-density loading of the microbes and facilitates extracellular electron transfer with low intrinsic resistance.Consequently,the hydrophilic surface of N-MWCNT can generate high charge mobility,enabling a high-power output performance of the MFC.In consequence,the MFC system based on N-MWCNT/GA anode exhibits a peak power density and output voltage of 2977.8 mW m^(−2)and 0.654 V,which are 1.83 times and 16.3%higher than those obtained with MWCNT/GA,respectively.These results demonstrate that 3D N-MWCNT/GA anodes can be developed for high-power MFCs in different environments by optimizing their chemical and microstructures. 展开更多
关键词 ANODE graphene aerogel microbial fuel cell n-doped carbon nanotube
下载PDF
ZIF-Mediated Anchoring of Co species on N-doped Carbon Nanorods as an Efficient Cathode Catalyst for Zn-Air Batteries 被引量:1
12
作者 Qiang Yu Jianshuai Lv +7 位作者 Jiantao Li Ruohan Yu Jinsong Wu Shibo Xi Xinyuan Li Nuo Xu Liang Zhou Liqiang Ma 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第3期257-263,共7页
Developing efficient oxygen reduction reaction(ORR)catalyst is essential for the practical application of Zn-air batteries(ZABs).In this contribution,we develop a novel zeolitic imidazolate framework(ZIF)-mediated str... Developing efficient oxygen reduction reaction(ORR)catalyst is essential for the practical application of Zn-air batteries(ZABs).In this contribution,we develop a novel zeolitic imidazolate framework(ZIF)-mediated strategy to anchor Co species on N-doped carbon nanorods for efficient ORR.Featuring ultrahigh N-doping(10.29 at.%),monodisperse Co nanocrystal decoration,and well-dispersed Co-N_(x)functionalization,the obtained Co-decorated N-doped carbon nanorods(Co@NCNR)exhibit a decent ORR performance comparable to commercial Pt/C in alkaline media.Aqueous ZABs have been assembled using Co@NCNR as the cathode catalyst.The assembled ZABs manifest high initial open-circuit voltage as well as high energy density.In addition,the Co@NCNR also demonstrates ideal ORR performance in quasi-solid-state ZABs. 展开更多
关键词 Co nanocrystals Co-N_(x) n-doped carbon oxygen reduction reaction Zn-air battery
下载PDF
Schiff-base polymer derived FeCo-N-doped porous carbon flowers as bifunctional oxygen electrocatalyst for long-life rechargeable zinc-air batteries
13
作者 Yusong Deng Jiahui Zheng +3 位作者 Bei Liu Huaming Li Mei Yang Zhiyu Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期470-478,I0012,共10页
Rational design and exploration of low-cost and robust bifunctional oxygen electrocatalysts are vitally important for developing high-performance zinc-air batteries(ZABs).Herein,we reported a facile yet cost-efficient... Rational design and exploration of low-cost and robust bifunctional oxygen electrocatalysts are vitally important for developing high-performance zinc-air batteries(ZABs).Herein,we reported a facile yet cost-efficient approach to construct a bifunctional oxygen reduction reaction(ORR)/oxygen evolution reaction(OER)electrocatalyst composed of N-doped porous carbon nanosheet flowers decorated with Fe Co nanoparticles(Fe Co/N-CF).Rational design of this catalyst is achieved by designing Schiff-base polymer with unique molecular structure via hydrogen bonding of cyanuramide and terephthalaldehyde polycondensate in the presence of metal cations.It exhibits excellent activity and stability for electrocatalysis of ORR/OER,enabling ZAB with a high peak power density of 172 m W cm^(-2)and a large specific capacity of 811 m A h g^(-1)Znat large current.The rechargeable ZAB demonstrates excellent durability for 1000 h with slight voltage decay,far outperforming a couple of precious Pt/Ir-based catalysts.Density functional theory(DFT)calculations reveal that high activity of bimetallic Fe Co stems from enhanced O_(2)and OH-adsorption and accelerated O_(2)dissociation by OAO bond activation. 展开更多
关键词 Rechargeable zinc-air batteries Oxygen electrocatalyst Schiff-base polymer Bimetallic FeCo n-doped porous carbon
下载PDF
Binary molten salt in situ synthesis of sandwich-structure hybrids of hollowβ-Mo2C nanotubes and N-doped carbon nanosheets for hydrogen evolution reaction
14
作者 Tianyu Gong Yang Liu +6 位作者 Kai Cui Jiali Xu Linrui Hou Haowen Xu Ruochen Liu Jianlin Deng Changzhou Yuan 《Carbon Energy》 SCIE EI CAS CSCD 2023年第12期111-124,共14页
Focused exploration of earth-abundant and cost-efficient non-noble metal electrocatalysts with superior hydrogen evolution reaction(HER)performance is very important for large-scale and efficient electrolysis of water... Focused exploration of earth-abundant and cost-efficient non-noble metal electrocatalysts with superior hydrogen evolution reaction(HER)performance is very important for large-scale and efficient electrolysis of water.Herein,a sandwich composite structure(designed as MS-Mo2C@NCNS)ofβ-Mo2C hollow nanotubes(HNT)and N-doped carbon nanosheets(NCNS)is designed and prepared using a binary NaCl–KCl molten salt(MS)strategy for HER.The temperature-dominant Kirkendall formation mechanism is tentatively proposed for such a three-dimensional hierarchical framework.Due to its attractive structure and componential synergism,MS-Mo2C@NCNS exposes more effective active sites,confers robust structural stability,and shows significant electrocatalytic activity/stability in HER,with a current density of 10 mA cm-2 and an overpotential of only 98 mV in 1 M KOH.Density functional theory calculations point to the synergistic effect of Mo2C HNT and NCNS,leading to enhanced electronic transport and suitable adsorption free energies of H*(ΔGH*)on the surface of electroactive Mo2C.More significantly,the MS-assisted synthetic methodology here provides an enormous perspective for the commercial development of highly active non-noble metal electrocatalysts toward efficient hydrogen evolution. 展开更多
关键词 binary molten-salt synthesis hydrogen evolution reaction Mo2C hollow nanotubes n-doped carbon nanosheets sandwich structure
下载PDF
Direct synthesis of nitrogen-doped mesoporous carbons for acetylene hydrochlorination 被引量:7
15
作者 杨勇 蓝国钧 +1 位作者 王小龙 李瑛 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第8期1242-1248,共7页
Nitrogen‐doped ordered mesoporous carbon (N‐OMC) catalysts were directly synthesized using SBA‐15 as a hard template and sucrose as a carbon source. Urea, which was used as the nitrogen source, was carbonized wit... Nitrogen‐doped ordered mesoporous carbon (N‐OMC) catalysts were directly synthesized using SBA‐15 as a hard template and sucrose as a carbon source. Urea, which was used as the nitrogen source, was carbonized with sucrose. A 3.6 wt% nitrogen doping of the carbon framework was achieved, with more than 70%of the nitrogen incorporated as quaternary nitrogen species. Only 0.2 wt% nitrogen doping, with only 32.7% quaternary nitrogen incorporation was obtained in an N‐OMC catalyst (N‐OMC‐T) prepared using a two‐step post‐synthesis method. The acetylene hy‐drochlorination activities of N‐OMC catalysts prepared via the one‐step method were higher than that of the N‐OMC‐T catalyst because of the higher nitrogen loadings. 展开更多
关键词 ACETYLENE HYDROCHLORINATION Vinyl chloride MERCURY-FREE n-doped carbon
下载PDF
N-doped ordered mesoporous carbon as a multifunctional support of ultrafine Pt nanoparticles for hydrogenation of nitroarenes 被引量:8
16
作者 梁继芬 张晓明 +1 位作者 景铃胭 杨恒权 《Chinese Journal of Catalysis》 CSCD 北大核心 2017年第7期1252-1260,共9页
Due to the advantages of high surface areas, large pore volumes and pore sizes, abundant nitrogen content that favored the metal-support interactions, N-doped ordered mesoporous carbons are regarded as a kind ... Due to the advantages of high surface areas, large pore volumes and pore sizes, abundant nitrogen content that favored the metal-support interactions, N-doped ordered mesoporous carbons are regarded as a kind of fascinating and potential support for the synthesis of effective supported cat-alysts. Here, a N-doped ordered mesoporous carbon with a high N content (9.58 wt%), high surface area (417 m^2/g), and three-dimensional cubic structure was synthesized successfully and used as an effective support for immobilizing Pt nanoparticles (NPs). The positive effects of nitrogen on the metal particle size enabled ultrasmall Pt NPs (about 1.0 ± 0.5 nm) to be obtained. Moreover, most of the Pt NPs are homogeneously dispersed in the mesoporous channels. However, using the ordered mesoporous carbon without nitrogen as support, the particles were larger (4.4 ± 1.7 nm) and many Pt NPs were distributed on the external surface, demonstrating the important role of the nitrogen species. The obtained N-doped ordered mesoporous material supported catalyst showed excellent catalytic activity (conversion 100%) and selectivity (〉99%) in the hydrogenation of halogenated nitrobenzenes under mild conditions. These values are much higher than those achieved using a commercial Pt/C catalyst (conversion 89% and selectivity 90%). This outstanding catalytic perfor-mance can be attributed to the synergetic effects of the mesoporous structure, N-functionalized support, and stabilized ultrasmall Pt NPs. Moreover, such supported catalyst also showed excellent catalytic performance in the hydrogenation of other halogenated nitrobenzenes and nitroarenes. In addition, the stability of the multifunctional catalyst was excellent and it could be reused more than 10 times without significant losses of activity and selectivity. Our results conclusively show that a N-doped carbon support enable the formation of ultrafine metal NPs and improve the reaction ac-tivity and selectivity. 展开更多
关键词 n-doped mesoporous carbon Multifunctional support Ultrafine platinum nanoparticle Hydrogenation reaction Halogenated nitrobenzene
下载PDF
N-doped porous carbon nanofibers sheathed pumpkin-like Si/C composites as free-standing anodes for lithium-ion batteries 被引量:9
17
作者 Yanfei Zeng Yudai Huang +7 位作者 Niantao Liu Xingchao Wang Yue Zhang Yong Guo Hong-Hui Wu Huixin Chen Xincun Tang Qiaobao Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第3期727-735,共9页
Dramatic capacity fading and poor rate performance are two main obstacles that severely hamper the widespread application of the Si anode owing to its large volume variation during cycling and low intrinsic electrical... Dramatic capacity fading and poor rate performance are two main obstacles that severely hamper the widespread application of the Si anode owing to its large volume variation during cycling and low intrinsic electrical conductivity.To mitigate these issues,free-standing N-doped porous carbon nanofibers sheathed pumpkin-like Si/C composites(Si/C-ZIF-8/CNFs)are designed and synthesized by electrospinning and carbonization methods,which present greatly enhanced electrochemical properties for lithium-ion battery anodes.This particular structure alleviates the volume variation,promotes the formation of stable solid electrolyte interphase(SEI)film,and improves the electrical conductivity.As a result,the as-obtained free-standing Si/C-ZIF-8/CNFs electrode delivers a high reversible capacity of 945.5 mAh g^(-1) at 0.2 A g^(-1) with a capacity retention of 64% for 150 cycles,and exhibits a reversible capacity of 538.6 mA h g^(-1) at 0.5 A g^(-1) over 500 cycles.Moreover,the full cell composed of a freestanding Si/C-ZIF-8/CNFs anode and commercial LiNi_(1/3)Co_(1/3)Mn_(1/3)O_(2)(NCM)cathode shows a capacity of 63.4 mA h g^(-1) after 100 cycles at 0.2 C,which corresponds to a capacity retention of 60%.This rational design could provide a new path for the development of high-performance Si-based anodes. 展开更多
关键词 Pumpkin-like silicon/carbon composites n-doped porous carbon nanofibers Free-standing anode Lithium-ion batteries
下载PDF
From Jackfruit Rags to Hierarchical Porous N-Doped Carbon: A High-Performance Anode Material for Sodium-Ion Batteries 被引量:5
18
作者 Baisheng Zhao Yichun Ding Zhenhai Wen 《Transactions of Tianjin University》 EI CAS 2019年第5期429-436,共8页
Renewable biomass-derived carbon materials have attracted increasing research attention as promising electrode materials for electrochemical energy storage devices, such as sodium-ion batteries (SIBs), due to their ou... Renewable biomass-derived carbon materials have attracted increasing research attention as promising electrode materials for electrochemical energy storage devices, such as sodium-ion batteries (SIBs), due to their outstanding electrical conductivity, hierarchical porous structure, intrinsic heteroatom doping, and environmental friendliness. Here, we investigate the potential of hierarchical N-doped porous carbon (NPC) derived from jackfruit rags through a facile pyrolysis as an anode material for SIBs. The cycling performance of NPC at 1 A/g for 2000 cycles featured a stable reversible capacity of 122.3 mA h/g with an outstanding capacity retention of 99.1%. These excellent electrochemical properties can be attributed to the unique structure of NPC;it features hierarchical porosity with abundant carbon edge defects and large speci c surface areas. These results illuminate the potential application of jackfruit rags-derived porous carbon in SIBs. 展开更多
关键词 POROUS carbon n-doped carbon Sodium-ion battery Anode JACKFRUIT rags Energy storage and conversion
下载PDF
Nitrogen-doped Carbon Nanospheres-Modified Graphitic Carbon Nitride with Outstanding Photocatalytic Activity 被引量:5
19
作者 Qiaoran Liu Hao Tian +6 位作者 Zhenghua Dai Hongqi Sun Jian Liu Zhimin Ao Shaobin Wang Chen Han Shaomin Liu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第2期154-168,共15页
Metals and metal oxides are widely used as photo/electro-catalysts for environmental remediation.However,there are many issues related to these metal-based catalysts for practical applications,such as high cost and de... Metals and metal oxides are widely used as photo/electro-catalysts for environmental remediation.However,there are many issues related to these metal-based catalysts for practical applications,such as high cost and detrimental environmental impact due to metal leaching.Carbon-based catalysts have the potential to overcome these limitations.In this study,monodisperse nitrogen-doped carbon nanospheres(NCs)were synthesized and loaded onto graphitic carbon nitride(g-C3N4,GCN)via a facile hydrothermal method for photocatalytic removal of sulfachloropyridazine(SCP).The prepared metal-free GCN-NC exhibited remarkably enhanced efficiency in SCP degradation.The nitrogen content in NC critically influences the physicochemical properties and performances of the resultant hybrids.The optimum nitrogen doping concentration was identified at 6.0 wt%.The SCP removal rates can be improved by a factor of 4.7 and 3.2,under UV and visible lights,by the GCN-NC composite due to the enhanced charge mobility and visible light harvesting.The mechanism of the improved photocatalytic performance and band structure alternation were further investigated by density functional theory(DFT)calculations.The DFT results confirm the high capability of the GCN-NC hybrids to activate the electron–hole pairs by reducing the band gap energy and efficiently separating electron/hole pairs.Superoxide and hydroxyl radicals are subsequently produced,leading to the efficient SCP removal. 展开更多
关键词 N-DOPING carbon sphere Graphitic carbon nitride PHOTOCATALYSIS DEGRADATION
下载PDF
FeCo alloy@N-doped graphitized carbon as an efficient cocatalyst for enhanced photocatalytic H2 evolution by inducing accelerated charge transfer 被引量:6
20
作者 Sibo Chen Yun Hau Ng +6 位作者 Jihai Liao Qiongzhi Gao Siyuan Yang Feng Peng Xinhua Zhong Yueping Fang Shengsen Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第1期92-101,I0004,共11页
Cocatalysts play important roles in improving the activity and stability of most photocatalysts.It is of great significance to develop economical,efficient and stable cocatalysts.Herein,using Na2CoFe(CN)6 complex as p... Cocatalysts play important roles in improving the activity and stability of most photocatalysts.It is of great significance to develop economical,efficient and stable cocatalysts.Herein,using Na2CoFe(CN)6 complex as precursor,a novel noble-metal-free FeCo@NGC cocatalyst(nano-FeCo alloy@N-doped graphitized carbon) is fabricated by a simple pyrolysis method.Coupling with g-C3 N4, the optimal FeCo@NGC/g-C3N4 receives a boosted visible light driven photocatalytic H2 evolution rate of 42.2 μmol h-1, which is even higher than that of 1.0 wt% Pt modified g-C3N4 photocatalyst.Based on the results of density functional theory(DFT) calculations and practical experiment measurements,such outstanding photocatalytic performance of FeCo@NGC/g-C3N4 is mainly attributed to two aspects.One is the accelerated charge transfer behavior,induced by a photogene rated electrons secondary transfer performance on the surface of FeCo alloy nanoparticles.The other is related to the adjustment of H adsorption energy(approaching the standard hydrogen electrode potential) by the presence of external NGC thin layer.Both factors play key roles in the H2 evolution reaction.Such outstanding performance highlights an enormous potential of developing noble-metal-free bimetallic nano-alloy as inexpensive and efficient cocatalysts for solar applications. 展开更多
关键词 FeCo alloy nanoparticles COCATALYST n-doped graphitized carbon g-C3N4 Visible light Hydrogen evolution
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部