Modifying polypropylene membranes with interpenetrating polymer networks(IPNs) through the incorporation of poly(glycidyl methacrylate-N-methyl-D-glucamine)(P(GMA-NMG)) was performed by in situ synthesis via radical p...Modifying polypropylene membranes with interpenetrating polymer networks(IPNs) through the incorporation of poly(glycidyl methacrylate-N-methyl-D-glucamine)(P(GMA-NMG)) was performed by in situ synthesis via radical polymerization. The surface of the polypropylene membrane was activated by hydrophilic grafted polyelectrolyte, and then, pressure injection was used for the impregnation of the reactive solution in the membrane.Two types of pore-filled membranes were synthesized, chelating interpenetrating homopolymer networks of P(GMA-NMG), and chelating-ion exchange interpenetrating polymer networks(e.g., P(GMA-NMG)/P(AA),P(GMA-NMG)/P(AMPSA), and P(GMA-NMG)/P(Cl VBTA)). After their synthesis, the modified polypropylene membranes were characterized using techniques such as the electrokinetic potential, SEM, FT-IR, and Donnan dialysis to corroborate the chromium ion transport. The P(GMA-NMG) and complex network membranes exhibited a hydrophilic character with a water-uptake capacity between 20% and 35% and a percentage of modification between 4.0% and 7.0% in comparison with the behavior of the unmodified polypropylene membrane.Hexavalent chromium ions were efficiently transported from the food chamber at p H 9.0 when the 65.2%MTA1 P(Cl VBTA) homopolymer IPN membrane and 48.5% MTAG P(GMA-NMG)/P(Cl VBTA) IPN membrane were used. Similarly, hexavalent chromium ions were removed from the food chamber at pH 3.0 when MTAG(63.30%) and MTA1(35.68%) were used in 1 mol·L^(-1)Na Cl solution as the extraction reagent.展开更多
Defects in the function and development of GABAergic interneurons have been linked to psychiatric disorders, so preservation of these interneurons in brain slices is important for successful electrophysiological recor...Defects in the function and development of GABAergic interneurons have been linked to psychiatric disorders, so preservation of these interneurons in brain slices is important for successful electrophysiological recording in various ex vivo methods. However, it is difficult to maintain the activity and morphology of neurons in slices from mice of 〉30 days old. Here we evaluated the N-methyI-D-glucamine (NMDG)- based artificial cerebrospinal fluid (aCSF) method for the preservation of interneurons in slices from mice of up to -6 months old and discussed the steps that may affect their quality during slicing. We found that the NMDG-aCSF method rescued more cells than sucrose-aCSF and successfully preserved different types of interneurons including parvalbumin- and somatostatin-positive interneurons. In addition, both the chemical and electrical synaptic signaling of interneurons were maintained. These results demonstrate that the NMDG-aCSF method is suitable for the preservation of interneurons, especially in studies of gap junctions.展开更多
基金Supported by FONDECYT(Project no.1150510)PIA(Anillo ACT-130)+4 种基金7FP-MC Actions Grant,REDOC(MINEDUC Project UCO1202 at U.de Concepción)CHILTURPOL2(PIRSES-GA-2009 Project,Grant No.269153)the Marie Curie Program(n°269153)FONDECYT Grant No.11140324CIPA(No.20301.934.15),Chile
文摘Modifying polypropylene membranes with interpenetrating polymer networks(IPNs) through the incorporation of poly(glycidyl methacrylate-N-methyl-D-glucamine)(P(GMA-NMG)) was performed by in situ synthesis via radical polymerization. The surface of the polypropylene membrane was activated by hydrophilic grafted polyelectrolyte, and then, pressure injection was used for the impregnation of the reactive solution in the membrane.Two types of pore-filled membranes were synthesized, chelating interpenetrating homopolymer networks of P(GMA-NMG), and chelating-ion exchange interpenetrating polymer networks(e.g., P(GMA-NMG)/P(AA),P(GMA-NMG)/P(AMPSA), and P(GMA-NMG)/P(Cl VBTA)). After their synthesis, the modified polypropylene membranes were characterized using techniques such as the electrokinetic potential, SEM, FT-IR, and Donnan dialysis to corroborate the chromium ion transport. The P(GMA-NMG) and complex network membranes exhibited a hydrophilic character with a water-uptake capacity between 20% and 35% and a percentage of modification between 4.0% and 7.0% in comparison with the behavior of the unmodified polypropylene membrane.Hexavalent chromium ions were efficiently transported from the food chamber at p H 9.0 when the 65.2%MTA1 P(Cl VBTA) homopolymer IPN membrane and 48.5% MTAG P(GMA-NMG)/P(Cl VBTA) IPN membrane were used. Similarly, hexavalent chromium ions were removed from the food chamber at pH 3.0 when MTAG(63.30%) and MTA1(35.68%) were used in 1 mol·L^(-1)Na Cl solution as the extraction reagent.
基金supported by grants from National Funds for Distinguished Young Scientists of China (81225007)the Funds for Creative Research Groups of China (81221003)
文摘Defects in the function and development of GABAergic interneurons have been linked to psychiatric disorders, so preservation of these interneurons in brain slices is important for successful electrophysiological recording in various ex vivo methods. However, it is difficult to maintain the activity and morphology of neurons in slices from mice of 〉30 days old. Here we evaluated the N-methyI-D-glucamine (NMDG)- based artificial cerebrospinal fluid (aCSF) method for the preservation of interneurons in slices from mice of up to -6 months old and discussed the steps that may affect their quality during slicing. We found that the NMDG-aCSF method rescued more cells than sucrose-aCSF and successfully preserved different types of interneurons including parvalbumin- and somatostatin-positive interneurons. In addition, both the chemical and electrical synaptic signaling of interneurons were maintained. These results demonstrate that the NMDG-aCSF method is suitable for the preservation of interneurons, especially in studies of gap junctions.