Anti-N-methyl-D-aspartate (NMDA) receptor encephalitis is a rare disease with uncertain etiology and pathogenesis that affects young women. Its diagnosis can be delayed because of the nonspecific neuropsychiatric symp...Anti-N-methyl-D-aspartate (NMDA) receptor encephalitis is a rare disease with uncertain etiology and pathogenesis that affects young women. Its diagnosis can be delayed because of the nonspecific neuropsychiatric symptoms in the foreground. This article describes the details of a recent complicated case of a patient with this condition which is related to an ovarian teratoma. Correct diagnostic and prompt treatment of anti-NMDA receptor encephalitis remains a serious clinical challenge due to its unspecific manifestations and varying response to treatments. The information will be of interest to clinicians working with encephalitis patients.展开更多
N-methyl-D-aspartate glutamate receptors(NMDARs)play crucial roles in the pathogenesis of neuronal injuries following a stroke insult;therefore,a plethora of preclinical studies focus on better understanding functions...N-methyl-D-aspartate glutamate receptors(NMDARs)play crucial roles in the pathogenesis of neuronal injuries following a stroke insult;therefore,a plethora of preclinical studies focus on better understanding functions of NMDARs and their associated signaling pathways.Over the past decades,NMDARs have been found to exert dual effects in neuronal deaths signaling and neuronal survival signaling during cerebral ischemia.Moreover,many complex intracellular signaling pathways downstream of NMDAR activation have been elucidated,which provide novel targets for developing much-needed neuro-protectants for patients with stroke.In this review,we will discuss the recent progress in understanding the underlying mechanisms of stroke related to NMDAR activation and the potential therapeutic strategies based on these discoveries.展开更多
Objective: Extracellular signal-regulated kinases (ERKs) can be activated by calcium signals. In this study, we investigated whether calcium-dependent kinases were involved in ERKs cascade activation after global c...Objective: Extracellular signal-regulated kinases (ERKs) can be activated by calcium signals. In this study, we investigated whether calcium-dependent kinases were involved in ERKs cascade activation after global cerebral ischemia. Methods Cerebral ischemia was induced by four-vessel occlusion, and the calcium-dependent proteins were detected by immunoblot. Results Lethal-simulated ischemia significantly resulted in ERKs activation in N-methyl-D-aspartate (NMDA) receptor-dependent manner, accompanying with differential upregulation of Src kinase and Ca^2+/calmodulin-dependent protein kinase Ⅱ (CaMKⅡ) activities. With the inhibition of Src family tyrosine kinases or CaMKⅡ by administration of PP2 or KN62, the phosphorylation of ERKs was impaired dramatically during post-ischemia recovery. However, ischemic challenge also repressed ERKs activity when Src kinase was excessively activated. Conclusions Src family tyrosine kinases and CaMKⅡ might be involved in the activation of ERKs mediated by NMDA receptor in response to acute ischemic stimuli in vivo, but the intense activation of Src kinase resulted from ischemia may play a reverse role in the ERKs cascade.展开更多
N-methyl-D-aspartate receptor hypofunction is the basis of pathophysiology in schizophrenia. Blocking the N-methyl-D-aspartate receptor impairs learning and memory abilities and induces pathological changes in the bra...N-methyl-D-aspartate receptor hypofunction is the basis of pathophysiology in schizophrenia. Blocking the N-methyl-D-aspartate receptor impairs learning and memory abilities and induces pathological changes in the brain. Previous studies have paid little attention to the role of the N-methyl-D-aspartate receptor subunit 1 (NR1) in neurogenesis in the hippocampus of schizophrenia. A mouse model of schizophrenia was established by intraperitoneal injection of 0.6 mg/kg MK-801, once a day, for 14 days. In N-methyl-D-aspartate-treated mice, N-methyl-D-aspartate was administered by intracerebroventricular injection in schizophrenia mice on day 15. The number of NR1-, Ki67- or BrdU-immunoreactive cells in the dentate gyrus was measured by immunofluorescence staining. Our data showed the number of NR1-immunoreactive cells increased along with the decreasing numbers of BrdU- and Ki67-immunoreactive cells in the schizophrenia groups compared with the control group. N-methyl-D-aspartate could reverse the above changes. These results indicated that NR1 can regulate neurogenesis in the hippocampal dentate gyrus of schizophrenia mice, supporting NR1 as a promising therapeutic target in the treatment of schizophrenia. This study was approved by the Experimental Animal Ethics Committee of the Ningxia Medical University, China (approval No. 2014-014) on March 6, 2014.展开更多
AIM: Many studies have demonstrated N-methyl-D-aspartate receptor-1-subunit (NMDAR1) is associated with amblyopia. The effectiveness of levodopa in improving the visual function of the children with amblyopia has also...AIM: Many studies have demonstrated N-methyl-D-aspartate receptor-1-subunit (NMDAR1) is associated with amblyopia. The effectiveness of levodopa in improving the visual function of the children with amblyopia has also been proved. But the mechanism is undefined. Our study was to explore the possible mechanism. METHODS: Sixty 14-day-old healthy SD rats were randomly divided into 4 groups, including normal group, monocular deprivation group, levodopa group and normal saline group, 15 rats each. We sutured all the rats' unilateral eyelids except normal group to establish the monocular deprivation animal model and raise them in normal sunlight till 45-day-old. NMDAR1 was detected in the visual cortex with immunohistochemistry methods, Western Blot and Real time PCR. LD and NS groups were gavaged with levodopa (40mg/kg) and normal saline for 28 days respectively. NMDAR1 was also detected with the methods above. RESULTS: NMDAR1 in the visual cortex of MD group was less than that of normal group. NMDAR1 in the visual cortex of LD group was more than that of NS group. CONCLUSION: NMDAR1 is associated with the plasticity of visual development. Levodopa may influence the expression of NMDAR1 and improve visual function, and its target may lie in the visual cortex.展开更多
Status epilepticus was induced via intraperitoneal injection of lithium-pilocarpine.The inhibitory effects of propofol on status epilepticus in rats were judged based on observation of behavior,electroencephalography ...Status epilepticus was induced via intraperitoneal injection of lithium-pilocarpine.The inhibitory effects of propofol on status epilepticus in rats were judged based on observation of behavior,electroencephalography and 24-hour survival rate.Propofol(12.5-100 mg/kg) improved status epilepticus in a dose-dependent manner,and significantly reduced the number of deaths within 24 hours of lithium-pilocarpine injection.Western blot results showed that,24 hours after induction of status epilepticus,the levels of N-methyl-D-aspartate receptor 2A and 2B subunits were significantly increased in rat cerebral cortex and hippocampus.Propofol at 50 mg/kg significantly suppressed the increase in N-methyl-D-aspartate receptor 2B subunit levels,but not the increase in N-methyl-D-aspartate receptor 2A subunit levels.The results suggest that propofol can effectively inhibit status epilepticus induced by lithium-pilocarpine.This effect may be associated with downregulation of N-methyl-D-aspartate receptor 2B subunit expression after seizures.展开更多
Previous reports have shown that N-methyl-D-aspartate (NMDA) receptors are extensively involved in epilepsy genesis and recurrence. Recent studies have shown that synaptic and extrasynaptic NMDA receptors play diffe...Previous reports have shown that N-methyl-D-aspartate (NMDA) receptors are extensively involved in epilepsy genesis and recurrence. Recent studies have shown that synaptic and extrasynaptic NMDA receptors play different, or even opposing, roles in various signaling pathways, including synaptic plasticity and neuronal death. The present study analyzed changes in synaptic and extrasynaptic NMDA receptor-mediated currents during epilepsy onset. Mouse models of lithium chloride pilocarpLne-induced epilepsy were established, and hippocampal slices were prepared at 24 hours after the onset of status epilepticus. Synaptic and extrasynaptic NMDA receptor-mediated excitatory post-synaptic currents (NMDA-EPSCs) were recorded in CA1 pyramidal neurons by whole-cell patch clamp technique. Results demonstrated no significant difference in rise and delay time of synaptic NMDA-EPSCs compared with normal neurons. Peak amplitude, area-to-peak ratio, and rising time of extrasynaptic NMDA-EPSCs remained unchanged, but decay of extrasynaptic NMDA-EPSCs was faster than that of normal neurons, These results suggest that extrasynaptic NMDA receptors play a role in epileptogenesis.展开更多
This study investigated the effects of daily intraperitoneal injections of N-methyl-D-aspartate receptor antagonist MK-801 and nitric oxide synthase inhibitor nitro-L-arginine (L-NA) on the survival of retinal gangl...This study investigated the effects of daily intraperitoneal injections of N-methyl-D-aspartate receptor antagonist MK-801 and nitric oxide synthase inhibitor nitro-L-arginine (L-NA) on the survival of retinal ganglion cells (RGCs) at 1 and 2 weeks after unilateral optic nerve transection in adult hamsters. The left optic nerves of all animals were transected intraorbitally 1 mm from the optic disc and RGCs were retrogradely labeled with Fluorogold before they received different daily dosages of single MK-801 or L-NA as well as daily combinational treatments of these two chemicals. All experimental and control animals survived for 1 or 2 weeks after optic nerve transection. Our results revealed that the mean numbers of surviving RGCs increased and then decreased when the dosage of MK-801 (1.0, 3.0 and 4.5 mg/kg) and L-NA (1.5, 3.0, 4.5 and 6.0 mg/kg) increased at both 1 and 2 weeks survival time points. Daily combinational use of 1.0 mg/kg MK-801 and 1.5 mg/kg L-NA lead to a highest RGC number that was even higher than the sum of the RGC numbers in 1.0 mg/kg MK-801 and 1.5 mg/kg L-NA subgroups at 2 weeks. These findings indicated that both MK-801 and L-NA can protect axotomized RGCs in a dose-dependent manner and combinational treatment of these chemicals possesses a potentiative and protective effect.展开更多
Glutamate is the main exc i tatory neurotransmitter in the brain and binds to two major classes of receptors,theα-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid(AMPA)and the N-methyl-D-aspartate(NMDA)receptors.U...Glutamate is the main exc i tatory neurotransmitter in the brain and binds to two major classes of receptors,theα-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid(AMPA)and the N-methyl-D-aspartate(NMDA)receptors.Unlike AMPA receptors that are immediately activated by glutamate release,NMDA receptors are blocked by magnesium and can only be activated by glutamate after membrane depolarization.Thus,NMDA receptors are only activated after repeated AMPA receptor activation by glutamate.NMDA receptors are,for the most part,calcium-permeable channels.Calcium influx through NMDA receptors modulates synaptic transmission in neurons based on prior history of excitation,and provides a means of scaling the strength of synapses required for Hebbian plasticity.展开更多
In the present study, 7 day postnatal C57/BL6 wild-type mice (hyperoxia group) and 7 day postnatal N-methyI-D-aspartate receptor subtype 3A knockout mice (NR3A KO group) were exposed to 75% oxygen and 15% nitrogen...In the present study, 7 day postnatal C57/BL6 wild-type mice (hyperoxia group) and 7 day postnatal N-methyI-D-aspartate receptor subtype 3A knockout mice (NR3A KO group) were exposed to 75% oxygen and 15% nitrogen in a closed container for 5 days. Wild-type mice raised in normoxia served as controls. TdT-mediated dUTP nick end labeling (TUNEL)/neuron-specific nuclear protein (NeuN) and 5-bromo-2'-deoxyuridine (BrdU)/NeuN immunofluorescence staining showed that the number of apoptotic cells and the number of proliferative cells in the dentate subgranular zone significantly increased in the hyperoxia group compared with the control group. However, in the same hyperoxia environment, the number of apoptotic cells and the number of proliferative cells significantly decreased in the NR3A KO group compared with hyperoxia group. TUNEL+/NeuN+ and BrdU+/NeuN~ cells were observed in the NR3A KO and the hyperoxia groups. These results demonstrated that the NR3A gene can promote cell apoptosis and mediate the potential damage in the developing brain induced by exposure to non-physiologically high concentrations of oxygen.展开更多
The latencies of motor- and somatosensory-evoked potentials were prolonged to different degrees, and wave amplitude was obviously decreased, after injection of dynorphin into the rat subarachnoid cavity. The wave ampl...The latencies of motor- and somatosensory-evoked potentials were prolonged to different degrees, and wave amplitude was obviously decreased, after injection of dynorphin into the rat subarachnoid cavity. The wave amplitude and latencies of motor- and somatosensory-evoked potentials were significantly recovered at 7 and 14 days after combined injection of dynorphin and either the kappa opioid receptor antagonist nor-binaltorphimine or the N-methyl-D-aspartate receptor antagonist MK-801. The wave amplitude and latency were similar in rats after combined injection of dynorphin and nor-binaltorphimine or MK-801. These results suggest that intrathecal injection of dynorphin causes damage to spinal cord function. Prevention of N-methyl-D-aspartate receptor or kappa receptor activation lessened the injury to spinal cord function induced by dynorphin.展开更多
BACKGROUND: Activation of N-methyl-D-aspartate receptor (NMDAR) is a key link of exitotoxicity at the phase of cerebral ischemic injury. Because NMDAR is a main way to mediate internal flow of Ca2+ among glutamic acid...BACKGROUND: Activation of N-methyl-D-aspartate receptor (NMDAR) is a key link of exitotoxicity at the phase of cerebral ischemic injury. Because NMDAR is a main way to mediate internal flow of Ca2+ among glutamic acid receptors, over-excitation can cause neuronal apoptosis. Calcitonin gene related peptide has a strongly biological activity. On one hand, it can protect ischemic neurons through inhibiting the expression of NMDAR1 mRNA; on the other hand, it can play the protective effect through down-regulating the expression of NMDAR1 mRNA by exogenous calcitonin gene related peptide. OBJECTIVE: To observe the expression of NMDAR1 and the regulatory effect of calcitonin gene related peptide on the expression of NMDAR1 mRNA and protein in the cerebral cortex of rats with focal cerebral ischemia/reperfusion (I/R). DESIGN: Randomized controlled animal study. SETTING: China Medical University. MATERIALS: A total of 216 healthy male Wistar rats, general grade, weighing 250-280 g, were selected in this study. Twelve rats were randomly selected to regard as control group; meanwhile, other 204 rats were used to establish middle cerebral artery occlusion/reperfusion (MACO) models. The main reagents were detailed as follows: calcitonin gene related peptide (Sigma Company); calcitonin gene related peptide kit (Boster Company); antibody Ⅰ, Ⅱ and antibody β-actin Ⅰ, Ⅱ of NMDAR1 mRNA and chemiluminescence reagent (Santa Cruz Company, USA). METHODS: The experiment was carried out in the Laboratory of Neurobiology of China Medical University from August 2005 to June 2006. ① Right MCAO models of rats were established to cause focal ischemia and scored based on Zea Longa five-grade scale. If the scores were 1, 2 and 3 after wakefulness, the MACO models were established successfully and involved in the experiment. A total of 120 rats with successful modeling were randomly divided into I/R group and administration group with 60 in each group. All rats in the both groups were observed at five time points, including 6, 12, 24, 48 and 72 hours after reperfusion and after 2-hour ischemia, with 12 experimental animals at each time point. Six rats were prepared for detection of hybridization in situ, and the other 6 were used for Western blotting histochemical detection. Rats in the control group were opened their skin to separate common carotid artery and not treated with line and drugs. In addition, rats in the I/R group were treated with 1 mL saline at 2 hours after focal cerebral ischemia, and then, rats in the administration group were treated with 1 mL (1 g/L) calcitonin gene related peptide at 2 hours after focal cerebral ischemia. ② The expression of NMDAR1 mRNA was detected with hybridization in situ at various time points; moreover, the expression of NMDAR1 protein was measured with Western blotting method at various time points. The results were analyzed with Metamoph imaging analytical system. MAIN OUTCOME MEASURES: The expression of NMDAR1 mRNA and its protein in cortical neurons of rats at various time points. RESULTS: A total of 84 rats were excluded because of non-symptoms, exanimation or death; and then, 132 rats were involved in the final analysis. The expression of NMDAR1 mRNA and its protein in cortical neurons of rats in the control group was 0.205±0.001 and 0.184±0.001, respectively; after I/R, expression of NMDAR1 mRNA and its protein was up-regulated, especially, expression of mRNA at 6, 12, 24, 48 and 72 hours was 0.245±0.003, 0.287±0.004, 0.354±0.008, 0.284±0.002 and 0.217±0.006, respectively; moreover, expression of protein at 6, 12, 24, 48 and 72 hours was 0.222±0.003, 0.261±0.028, 0.311±0.004, 0.259±0.013 and 0.210±0.008, respectively. There was significant difference between the two groups (0.205±0.001, P < 0.01). The expression was up-related in the former 24 hours, reached peak at 24 hours, down-regulated, and decreased to the level of control group at 72 hours. Except 72 hours, the expression of NMDAR1 mRNA and its protein was lower in administration group than that in I/R group at other four time points. In addition, the expression of mRNA at 6, 12, 24, 48 and 72 hours was 0.223±0.005, 0.243±0.001, 0.292±0.002, 0.250±0.003 and 0.213±0.003, respectively; moreover, the expression of protein at 6, 12, 24, 48 and 72 hours was 0.216±0.006, 0.245±0.025, 0.276±0.003, 0.241±0.045 and 0.202±0.013, respectively. There was significant difference at various time points (P < 0.05). CONCLUSION: The expressions of NMDAR1 mRNA and its protein of peripheral cortical neurons are up-related in ischemic area after focal cerebral I/R. Meanwhile, exogenous calcitonin gene related peptide can protect cortical neurons through inhibiting expression of NMDAR1 mRNA and its protein after focal cerebral I/R.展开更多
In normal rat forebrain, the NR1/NR2A and NR1/NR2B dimmers are the main constitutional forms of NMDA receptors. The present study was carried out to determine the functional properties of the heteromeric NMDA receptor...In normal rat forebrain, the NR1/NR2A and NR1/NR2B dimmers are the main constitutional forms of NMDA receptors. The present study was carried out to determine the functional properties of the heteromeric NMDA receptor subunits and their inhibition by bis(7)-tacrine (B7T). Rat NR1, NR2A and NR2B cDNAs were transfected into human embryonic kidney 293 cells (HEK-293).The inhibition of NMDA-activated currents by B7T was detected in HEK-293 cell expressing NR1/NR2A or NR1/NR2B receptors by using whole-cell patch-clamp techniques. The results showed that in HEK-293 cells expressing NR1/NR2A receptor, 1μmol/L B7T inhibited 30μmol/L NMDA- and 1000μmol/L NMDA-activated steady-state currents by 46% and 40%, respectively (P>0.05; n=5), suggesting that the inhibition of B7T on NR1/NR2A receptor doesn’t depend on NMDA concentration, which is consistent with a non-competitive mechanism of inhibition. But for the NR1/NR2B receptor, 1μmol/L B7T inhibited 30μmol/L NMDA- and 1000 μmol/L NMDA-activated steady-state currents by 61% and 13%, re-spectively (P<0.05; n=6), showing that B7T appears to be competitive with NMDA. In addition, simultaneous application of 1μmol/L B7T and 1000μmol/L NMDA produced a moderate inhibition of peak NMDA-activated current, followed by a gradual decline of the current to a steady state. However, the gradual onset of inhibition produced by B7T applied simultaneously with NMDA was eliminated when B7T was given 5s before NMDA. These results suggested that B7T inhibition of NMDA current mediated by NR1/NR2B receptor was slow onset, and it did not depend on the presence of the agonist. With holding potentials ranging from -50 to +50 mV, the B7T inhibition rate of NMDA currents didn’t change significantly, and neither did the reversal potential. We are led to conclude that the NR1/NR2B recombinant receptor can serve as a very useful model for studying the molecular mechanism of NMDA receptor inhibition by B7T.展开更多
BACKGROUND Some isopavines can exhibit important biological activity in the treatment of neurological disorders since it is considered an antagonist of the specific Nmethyl-D-Aspartate(NMDA)receptor.Amurensinine is an...BACKGROUND Some isopavines can exhibit important biological activity in the treatment of neurological disorders since it is considered an antagonist of the specific Nmethyl-D-Aspartate(NMDA)receptor.Amurensinine is an isopavine which still has few studies.In view of the potential of isopavines as NMDA receptor antagonists,theoretical studies using bioinformatics were carried out in order to investigate whether Amurensinine binds to the NMDA receptor and to analyze the receptor/Ligand complex.This data can contribute to understanding of the onset of neurological diseases and contribute to the planning of drugs for the treatment of neurological diseases involving the NMDA receptor.AIM To investigate the interaction of the antagonist Amurensinine on the GluN1A/GluN2B isoform of the NMDA receptor using bioinformatics.METHODS The three-dimen-sional structure of the GluN1A/GluN2B NMDA receptor was selected from the Protein Data Bank(PDB)-PDB:4PE5,and the three-dimensional structure of Amurensinine(ligand)was designed and optimized using ACD/SchemsketchTM software.Prediction of the protonation state of Amurensinine at physiological pH was performed using MarvinSketch software(ChemAxon).Protonated and non-protonated Amurensin were prepared using AutoDock Tools 4 software and simulations were performed using Autodock Vina v.1.2.0.The receptor/Ligand complexes were analyzed using PyMol(Schrödinger,Inc)and BIOVIA Discovery Studio(Dassault Systemes)software.To evaluate the NMDA receptor/Amurensinine complex and validate the molecular docking,simulations using NMDA receptor and Ifenprodil antagonist were performed under the same conditions.Ifenprodil was also designed,optimized and protonated,under the same conditions as Amurensinine.RESULTS Molecular docking simulations showed that both non-protonated and protonated Amurensinine bind to the amino terminal domain(ATD)domain of the GluN1A/GluN2B NMDA receptor with significant affinity energy,-7.9 Kcal/mol and-8.1 Kcal/mol,respectively.The NMDA receptor/non-protonated Amurensinine complex was stabilized by 15 bonds,while the NMDA receptor/protonated Amurensinine complex was stabilized by less than half,6 bonds.Despite the difference in the number of bonds,the variation in bond length and the average bond length values are similar in both complexes.The complex formed by the NMDA receptor and Ifenprodil showed an affinity energy of-8.2 Kcal/mol,a value very close to that obtained for the NMDA receptor/Amurensinine complex.Molecular docking between Ifenprodil and the GluN1A/GluN2B NMDA receptor demonstrated that this antagonist interacts with the ATD of the receptor,which validates the simulations performed with Amurensinine.CONCLUSION Amurensinine binds to the NMDA receptor on ATD,similar to Ifenprodil,and the affinity energy is closer.These data suggest that Amurensinine could behave as a receptor inhibitor,indicating that this compound may have a potential biological application,which should be evaluated by in vitro and preclinical assays.展开更多
文摘Anti-N-methyl-D-aspartate (NMDA) receptor encephalitis is a rare disease with uncertain etiology and pathogenesis that affects young women. Its diagnosis can be delayed because of the nonspecific neuropsychiatric symptoms in the foreground. This article describes the details of a recent complicated case of a patient with this condition which is related to an ovarian teratoma. Correct diagnostic and prompt treatment of anti-NMDA receptor encephalitis remains a serious clinical challenge due to its unspecific manifestations and varying response to treatments. The information will be of interest to clinicians working with encephalitis patients.
文摘N-methyl-D-aspartate glutamate receptors(NMDARs)play crucial roles in the pathogenesis of neuronal injuries following a stroke insult;therefore,a plethora of preclinical studies focus on better understanding functions of NMDARs and their associated signaling pathways.Over the past decades,NMDARs have been found to exert dual effects in neuronal deaths signaling and neuronal survival signaling during cerebral ischemia.Moreover,many complex intracellular signaling pathways downstream of NMDAR activation have been elucidated,which provide novel targets for developing much-needed neuro-protectants for patients with stroke.In this review,we will discuss the recent progress in understanding the underlying mechanisms of stroke related to NMDAR activation and the potential therapeutic strategies based on these discoveries.
基金Acknowledgements: This work was supported by the Natural Science Foundation of Jiangsu Province, China (No. 04KJB310082) and the Science and Technology Development Foundation of Nanjing Medical University (No. 06NMUZ002).
文摘Objective: Extracellular signal-regulated kinases (ERKs) can be activated by calcium signals. In this study, we investigated whether calcium-dependent kinases were involved in ERKs cascade activation after global cerebral ischemia. Methods Cerebral ischemia was induced by four-vessel occlusion, and the calcium-dependent proteins were detected by immunoblot. Results Lethal-simulated ischemia significantly resulted in ERKs activation in N-methyl-D-aspartate (NMDA) receptor-dependent manner, accompanying with differential upregulation of Src kinase and Ca^2+/calmodulin-dependent protein kinase Ⅱ (CaMKⅡ) activities. With the inhibition of Src family tyrosine kinases or CaMKⅡ by administration of PP2 or KN62, the phosphorylation of ERKs was impaired dramatically during post-ischemia recovery. However, ischemic challenge also repressed ERKs activity when Src kinase was excessively activated. Conclusions Src family tyrosine kinases and CaMKⅡ might be involved in the activation of ERKs mediated by NMDA receptor in response to acute ischemic stimuli in vivo, but the intense activation of Src kinase resulted from ischemia may play a reverse role in the ERKs cascade.
基金supported by the National Natural Science Foundation of China,No.81160169(to JL),81460214(to JL),31660270(to JD),31460255(to JD)the Natural Science Foundation of Ningxia Hui Autonomous Region of China,No.2018AAC02005(to JL)
文摘N-methyl-D-aspartate receptor hypofunction is the basis of pathophysiology in schizophrenia. Blocking the N-methyl-D-aspartate receptor impairs learning and memory abilities and induces pathological changes in the brain. Previous studies have paid little attention to the role of the N-methyl-D-aspartate receptor subunit 1 (NR1) in neurogenesis in the hippocampus of schizophrenia. A mouse model of schizophrenia was established by intraperitoneal injection of 0.6 mg/kg MK-801, once a day, for 14 days. In N-methyl-D-aspartate-treated mice, N-methyl-D-aspartate was administered by intracerebroventricular injection in schizophrenia mice on day 15. The number of NR1-, Ki67- or BrdU-immunoreactive cells in the dentate gyrus was measured by immunofluorescence staining. Our data showed the number of NR1-immunoreactive cells increased along with the decreasing numbers of BrdU- and Ki67-immunoreactive cells in the schizophrenia groups compared with the control group. N-methyl-D-aspartate could reverse the above changes. These results indicated that NR1 can regulate neurogenesis in the hippocampal dentate gyrus of schizophrenia mice, supporting NR1 as a promising therapeutic target in the treatment of schizophrenia. This study was approved by the Experimental Animal Ethics Committee of the Ningxia Medical University, China (approval No. 2014-014) on March 6, 2014.
文摘AIM: Many studies have demonstrated N-methyl-D-aspartate receptor-1-subunit (NMDAR1) is associated with amblyopia. The effectiveness of levodopa in improving the visual function of the children with amblyopia has also been proved. But the mechanism is undefined. Our study was to explore the possible mechanism. METHODS: Sixty 14-day-old healthy SD rats were randomly divided into 4 groups, including normal group, monocular deprivation group, levodopa group and normal saline group, 15 rats each. We sutured all the rats' unilateral eyelids except normal group to establish the monocular deprivation animal model and raise them in normal sunlight till 45-day-old. NMDAR1 was detected in the visual cortex with immunohistochemistry methods, Western Blot and Real time PCR. LD and NS groups were gavaged with levodopa (40mg/kg) and normal saline for 28 days respectively. NMDAR1 was also detected with the methods above. RESULTS: NMDAR1 in the visual cortex of MD group was less than that of normal group. NMDAR1 in the visual cortex of LD group was more than that of NS group. CONCLUSION: NMDAR1 is associated with the plasticity of visual development. Levodopa may influence the expression of NMDAR1 and improve visual function, and its target may lie in the visual cortex.
基金supported by National Natural Science Foundation of China,No. 30500482
文摘Status epilepticus was induced via intraperitoneal injection of lithium-pilocarpine.The inhibitory effects of propofol on status epilepticus in rats were judged based on observation of behavior,electroencephalography and 24-hour survival rate.Propofol(12.5-100 mg/kg) improved status epilepticus in a dose-dependent manner,and significantly reduced the number of deaths within 24 hours of lithium-pilocarpine injection.Western blot results showed that,24 hours after induction of status epilepticus,the levels of N-methyl-D-aspartate receptor 2A and 2B subunits were significantly increased in rat cerebral cortex and hippocampus.Propofol at 50 mg/kg significantly suppressed the increase in N-methyl-D-aspartate receptor 2B subunit levels,but not the increase in N-methyl-D-aspartate receptor 2A subunit levels.The results suggest that propofol can effectively inhibit status epilepticus induced by lithium-pilocarpine.This effect may be associated with downregulation of N-methyl-D-aspartate receptor 2B subunit expression after seizures.
基金Shanghai Pujiang Program,No. 06PJ14053the National Natural Science Foundation of China,No. 30600177+2 种基金the Scientific Research Founda-tion for the Returned Over-seas Chinese Scholars,State Education MinistryDoctoral Fund of Ministry of Education of China,No. 20070248083Shanghai Leading Aca-demic Discipline Project,No. B205
文摘Previous reports have shown that N-methyl-D-aspartate (NMDA) receptors are extensively involved in epilepsy genesis and recurrence. Recent studies have shown that synaptic and extrasynaptic NMDA receptors play different, or even opposing, roles in various signaling pathways, including synaptic plasticity and neuronal death. The present study analyzed changes in synaptic and extrasynaptic NMDA receptor-mediated currents during epilepsy onset. Mouse models of lithium chloride pilocarpLne-induced epilepsy were established, and hippocampal slices were prepared at 24 hours after the onset of status epilepticus. Synaptic and extrasynaptic NMDA receptor-mediated excitatory post-synaptic currents (NMDA-EPSCs) were recorded in CA1 pyramidal neurons by whole-cell patch clamp technique. Results demonstrated no significant difference in rise and delay time of synaptic NMDA-EPSCs compared with normal neurons. Peak amplitude, area-to-peak ratio, and rising time of extrasynaptic NMDA-EPSCs remained unchanged, but decay of extrasynaptic NMDA-EPSCs was faster than that of normal neurons, These results suggest that extrasynaptic NMDA receptors play a role in epileptogenesis.
基金supported by research grants from Chinese National Key Project for Basic Research,No. 2011CB504402the National Natural Science Foundation of China, No. 30901649 and 30872829
文摘This study investigated the effects of daily intraperitoneal injections of N-methyl-D-aspartate receptor antagonist MK-801 and nitric oxide synthase inhibitor nitro-L-arginine (L-NA) on the survival of retinal ganglion cells (RGCs) at 1 and 2 weeks after unilateral optic nerve transection in adult hamsters. The left optic nerves of all animals were transected intraorbitally 1 mm from the optic disc and RGCs were retrogradely labeled with Fluorogold before they received different daily dosages of single MK-801 or L-NA as well as daily combinational treatments of these two chemicals. All experimental and control animals survived for 1 or 2 weeks after optic nerve transection. Our results revealed that the mean numbers of surviving RGCs increased and then decreased when the dosage of MK-801 (1.0, 3.0 and 4.5 mg/kg) and L-NA (1.5, 3.0, 4.5 and 6.0 mg/kg) increased at both 1 and 2 weeks survival time points. Daily combinational use of 1.0 mg/kg MK-801 and 1.5 mg/kg L-NA lead to a highest RGC number that was even higher than the sum of the RGC numbers in 1.0 mg/kg MK-801 and 1.5 mg/kg L-NA subgroups at 2 weeks. These findings indicated that both MK-801 and L-NA can protect axotomized RGCs in a dose-dependent manner and combinational treatment of these chemicals possesses a potentiative and protective effect.
基金supported by grants from the Heart and Stroke Foundation of Canada(G-13-0002596&G-18-0022157,to HHCG-16-00014085,to AFRS)+4 种基金Ontario Mental Health Foundation(to HHC),the Canadian Institutes of Health Research(201610PJT#376403,to HHC201610PJT#376503,to AFRS)the Natural Science and Engineering Research Council of Canada(RGPIN/06212-2014,to HHCRGPIN/2016-04985,to AFRS)supported by a Mid-Career Investigator Award(grant#7506)from the Heart and Stroke Foundation of Ontario.
文摘Glutamate is the main exc i tatory neurotransmitter in the brain and binds to two major classes of receptors,theα-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid(AMPA)and the N-methyl-D-aspartate(NMDA)receptors.Unlike AMPA receptors that are immediately activated by glutamate release,NMDA receptors are blocked by magnesium and can only be activated by glutamate after membrane depolarization.Thus,NMDA receptors are only activated after repeated AMPA receptor activation by glutamate.NMDA receptors are,for the most part,calcium-permeable channels.Calcium influx through NMDA receptors modulates synaptic transmission in neurons based on prior history of excitation,and provides a means of scaling the strength of synapses required for Hebbian plasticity.
基金supported by the National Institutes of Health, USA, No. NS 045810, NS 057255the BasicClinical Scientific Research Foundation Program of the Capital Medical University, China, No. 2006JL19
文摘In the present study, 7 day postnatal C57/BL6 wild-type mice (hyperoxia group) and 7 day postnatal N-methyI-D-aspartate receptor subtype 3A knockout mice (NR3A KO group) were exposed to 75% oxygen and 15% nitrogen in a closed container for 5 days. Wild-type mice raised in normoxia served as controls. TdT-mediated dUTP nick end labeling (TUNEL)/neuron-specific nuclear protein (NeuN) and 5-bromo-2'-deoxyuridine (BrdU)/NeuN immunofluorescence staining showed that the number of apoptotic cells and the number of proliferative cells in the dentate subgranular zone significantly increased in the hyperoxia group compared with the control group. However, in the same hyperoxia environment, the number of apoptotic cells and the number of proliferative cells significantly decreased in the NR3A KO group compared with hyperoxia group. TUNEL+/NeuN+ and BrdU+/NeuN~ cells were observed in the NR3A KO and the hyperoxia groups. These results demonstrated that the NR3A gene can promote cell apoptosis and mediate the potential damage in the developing brain induced by exposure to non-physiologically high concentrations of oxygen.
基金Key Science and Technology Research and Development Program of Liaoning Province, China, No. 20112250021, 20112250041.
文摘The latencies of motor- and somatosensory-evoked potentials were prolonged to different degrees, and wave amplitude was obviously decreased, after injection of dynorphin into the rat subarachnoid cavity. The wave amplitude and latencies of motor- and somatosensory-evoked potentials were significantly recovered at 7 and 14 days after combined injection of dynorphin and either the kappa opioid receptor antagonist nor-binaltorphimine or the N-methyl-D-aspartate receptor antagonist MK-801. The wave amplitude and latency were similar in rats after combined injection of dynorphin and nor-binaltorphimine or MK-801. These results suggest that intrathecal injection of dynorphin causes damage to spinal cord function. Prevention of N-methyl-D-aspartate receptor or kappa receptor activation lessened the injury to spinal cord function induced by dynorphin.
文摘BACKGROUND: Activation of N-methyl-D-aspartate receptor (NMDAR) is a key link of exitotoxicity at the phase of cerebral ischemic injury. Because NMDAR is a main way to mediate internal flow of Ca2+ among glutamic acid receptors, over-excitation can cause neuronal apoptosis. Calcitonin gene related peptide has a strongly biological activity. On one hand, it can protect ischemic neurons through inhibiting the expression of NMDAR1 mRNA; on the other hand, it can play the protective effect through down-regulating the expression of NMDAR1 mRNA by exogenous calcitonin gene related peptide. OBJECTIVE: To observe the expression of NMDAR1 and the regulatory effect of calcitonin gene related peptide on the expression of NMDAR1 mRNA and protein in the cerebral cortex of rats with focal cerebral ischemia/reperfusion (I/R). DESIGN: Randomized controlled animal study. SETTING: China Medical University. MATERIALS: A total of 216 healthy male Wistar rats, general grade, weighing 250-280 g, were selected in this study. Twelve rats were randomly selected to regard as control group; meanwhile, other 204 rats were used to establish middle cerebral artery occlusion/reperfusion (MACO) models. The main reagents were detailed as follows: calcitonin gene related peptide (Sigma Company); calcitonin gene related peptide kit (Boster Company); antibody Ⅰ, Ⅱ and antibody β-actin Ⅰ, Ⅱ of NMDAR1 mRNA and chemiluminescence reagent (Santa Cruz Company, USA). METHODS: The experiment was carried out in the Laboratory of Neurobiology of China Medical University from August 2005 to June 2006. ① Right MCAO models of rats were established to cause focal ischemia and scored based on Zea Longa five-grade scale. If the scores were 1, 2 and 3 after wakefulness, the MACO models were established successfully and involved in the experiment. A total of 120 rats with successful modeling were randomly divided into I/R group and administration group with 60 in each group. All rats in the both groups were observed at five time points, including 6, 12, 24, 48 and 72 hours after reperfusion and after 2-hour ischemia, with 12 experimental animals at each time point. Six rats were prepared for detection of hybridization in situ, and the other 6 were used for Western blotting histochemical detection. Rats in the control group were opened their skin to separate common carotid artery and not treated with line and drugs. In addition, rats in the I/R group were treated with 1 mL saline at 2 hours after focal cerebral ischemia, and then, rats in the administration group were treated with 1 mL (1 g/L) calcitonin gene related peptide at 2 hours after focal cerebral ischemia. ② The expression of NMDAR1 mRNA was detected with hybridization in situ at various time points; moreover, the expression of NMDAR1 protein was measured with Western blotting method at various time points. The results were analyzed with Metamoph imaging analytical system. MAIN OUTCOME MEASURES: The expression of NMDAR1 mRNA and its protein in cortical neurons of rats at various time points. RESULTS: A total of 84 rats were excluded because of non-symptoms, exanimation or death; and then, 132 rats were involved in the final analysis. The expression of NMDAR1 mRNA and its protein in cortical neurons of rats in the control group was 0.205±0.001 and 0.184±0.001, respectively; after I/R, expression of NMDAR1 mRNA and its protein was up-regulated, especially, expression of mRNA at 6, 12, 24, 48 and 72 hours was 0.245±0.003, 0.287±0.004, 0.354±0.008, 0.284±0.002 and 0.217±0.006, respectively; moreover, expression of protein at 6, 12, 24, 48 and 72 hours was 0.222±0.003, 0.261±0.028, 0.311±0.004, 0.259±0.013 and 0.210±0.008, respectively. There was significant difference between the two groups (0.205±0.001, P < 0.01). The expression was up-related in the former 24 hours, reached peak at 24 hours, down-regulated, and decreased to the level of control group at 72 hours. Except 72 hours, the expression of NMDAR1 mRNA and its protein was lower in administration group than that in I/R group at other four time points. In addition, the expression of mRNA at 6, 12, 24, 48 and 72 hours was 0.223±0.005, 0.243±0.001, 0.292±0.002, 0.250±0.003 and 0.213±0.003, respectively; moreover, the expression of protein at 6, 12, 24, 48 and 72 hours was 0.216±0.006, 0.245±0.025, 0.276±0.003, 0.241±0.045 and 0.202±0.013, respectively. There was significant difference at various time points (P < 0.05). CONCLUSION: The expressions of NMDAR1 mRNA and its protein of peripheral cortical neurons are up-related in ischemic area after focal cerebral I/R. Meanwhile, exogenous calcitonin gene related peptide can protect cortical neurons through inhibiting expression of NMDAR1 mRNA and its protein after focal cerebral I/R.
基金supported by grants from the National Natural Science Foundation of China(No. 30970927)the Natural Science Foundation of Hubei Province, China(No.2008CDA053)the Wuhan Science and Technology Foundation(Nos.200970634270,201250499145-27 and 20115069-9189-23)
文摘In normal rat forebrain, the NR1/NR2A and NR1/NR2B dimmers are the main constitutional forms of NMDA receptors. The present study was carried out to determine the functional properties of the heteromeric NMDA receptor subunits and their inhibition by bis(7)-tacrine (B7T). Rat NR1, NR2A and NR2B cDNAs were transfected into human embryonic kidney 293 cells (HEK-293).The inhibition of NMDA-activated currents by B7T was detected in HEK-293 cell expressing NR1/NR2A or NR1/NR2B receptors by using whole-cell patch-clamp techniques. The results showed that in HEK-293 cells expressing NR1/NR2A receptor, 1μmol/L B7T inhibited 30μmol/L NMDA- and 1000μmol/L NMDA-activated steady-state currents by 46% and 40%, respectively (P>0.05; n=5), suggesting that the inhibition of B7T on NR1/NR2A receptor doesn’t depend on NMDA concentration, which is consistent with a non-competitive mechanism of inhibition. But for the NR1/NR2B receptor, 1μmol/L B7T inhibited 30μmol/L NMDA- and 1000 μmol/L NMDA-activated steady-state currents by 61% and 13%, re-spectively (P<0.05; n=6), showing that B7T appears to be competitive with NMDA. In addition, simultaneous application of 1μmol/L B7T and 1000μmol/L NMDA produced a moderate inhibition of peak NMDA-activated current, followed by a gradual decline of the current to a steady state. However, the gradual onset of inhibition produced by B7T applied simultaneously with NMDA was eliminated when B7T was given 5s before NMDA. These results suggested that B7T inhibition of NMDA current mediated by NR1/NR2B receptor was slow onset, and it did not depend on the presence of the agonist. With holding potentials ranging from -50 to +50 mV, the B7T inhibition rate of NMDA currents didn’t change significantly, and neither did the reversal potential. We are led to conclude that the NR1/NR2B recombinant receptor can serve as a very useful model for studying the molecular mechanism of NMDA receptor inhibition by B7T.
文摘BACKGROUND Some isopavines can exhibit important biological activity in the treatment of neurological disorders since it is considered an antagonist of the specific Nmethyl-D-Aspartate(NMDA)receptor.Amurensinine is an isopavine which still has few studies.In view of the potential of isopavines as NMDA receptor antagonists,theoretical studies using bioinformatics were carried out in order to investigate whether Amurensinine binds to the NMDA receptor and to analyze the receptor/Ligand complex.This data can contribute to understanding of the onset of neurological diseases and contribute to the planning of drugs for the treatment of neurological diseases involving the NMDA receptor.AIM To investigate the interaction of the antagonist Amurensinine on the GluN1A/GluN2B isoform of the NMDA receptor using bioinformatics.METHODS The three-dimen-sional structure of the GluN1A/GluN2B NMDA receptor was selected from the Protein Data Bank(PDB)-PDB:4PE5,and the three-dimensional structure of Amurensinine(ligand)was designed and optimized using ACD/SchemsketchTM software.Prediction of the protonation state of Amurensinine at physiological pH was performed using MarvinSketch software(ChemAxon).Protonated and non-protonated Amurensin were prepared using AutoDock Tools 4 software and simulations were performed using Autodock Vina v.1.2.0.The receptor/Ligand complexes were analyzed using PyMol(Schrödinger,Inc)and BIOVIA Discovery Studio(Dassault Systemes)software.To evaluate the NMDA receptor/Amurensinine complex and validate the molecular docking,simulations using NMDA receptor and Ifenprodil antagonist were performed under the same conditions.Ifenprodil was also designed,optimized and protonated,under the same conditions as Amurensinine.RESULTS Molecular docking simulations showed that both non-protonated and protonated Amurensinine bind to the amino terminal domain(ATD)domain of the GluN1A/GluN2B NMDA receptor with significant affinity energy,-7.9 Kcal/mol and-8.1 Kcal/mol,respectively.The NMDA receptor/non-protonated Amurensinine complex was stabilized by 15 bonds,while the NMDA receptor/protonated Amurensinine complex was stabilized by less than half,6 bonds.Despite the difference in the number of bonds,the variation in bond length and the average bond length values are similar in both complexes.The complex formed by the NMDA receptor and Ifenprodil showed an affinity energy of-8.2 Kcal/mol,a value very close to that obtained for the NMDA receptor/Amurensinine complex.Molecular docking between Ifenprodil and the GluN1A/GluN2B NMDA receptor demonstrated that this antagonist interacts with the ATD of the receptor,which validates the simulations performed with Amurensinine.CONCLUSION Amurensinine binds to the NMDA receptor on ATD,similar to Ifenprodil,and the affinity energy is closer.These data suggest that Amurensinine could behave as a receptor inhibitor,indicating that this compound may have a potential biological application,which should be evaluated by in vitro and preclinical assays.