Aqueous Zn metal batteries(AZMBs)with intrinsic safety,high energy density and low cost have been regarded as promising electrochemical energy storage devices.However,the parasitic reaction on metallic Zn anode and th...Aqueous Zn metal batteries(AZMBs)with intrinsic safety,high energy density and low cost have been regarded as promising electrochemical energy storage devices.However,the parasitic reaction on metallic Zn anode and the incompatibility between electrode and electrolytes lead to the deterioration of electrochemical performance of AZMBs during the cycling.The critical point to achieve the stable cycling of AZMBs is to properly regulate the zinc ion solvated structure and transfer behavior between metallic Zn anode and electrolyte.In recent years,numerous achievements have been made to resolve the formation of Zn dendrite and interface incompatible issues faced by AZMBs via optimizing the sheath structure and transport capability of zinc ions at electrode-electrolyte interface.In this review,the challenges for metallic Zn anode and electrode-electrolyte interface in AZMBs including dendrite formation and interface characteristics are presented.Following the influences of different strategies involving designing advanced electrode structu re,artificial solid electrolyte interphase(SEI)on Zn anode and electrolyte engineering to regulate zinc ion solvated sheath structure and transport behavior are summarized and discussed.Finally,the perspectives for the future development of design strategies for dendrite-free Zn metal anode and long lifespan AZMBs are also given.展开更多
The thermal degradation of poly(arylene sulfide sulfone)/N-methylpyrrolidone (PASS/NMP) crystal solvate was studied by thermogravimetric analysis (TGA) and was compared with pure PASS in order to determine the w...The thermal degradation of poly(arylene sulfide sulfone)/N-methylpyrrolidone (PASS/NMP) crystal solvate was studied by thermogravimetric analysis (TGA) and was compared with pure PASS in order to determine the way in which the formation of the crystal solvate affected the thermal properties of the polymer. The activation energy of the solid state process was determined using Kissinger's method, which does not require knowledge of the reaction mechanism (RM), to be 174.18 kJ/mol which was lower than that for pure PASS (E = 214 kJ/mol). The study of master curves together with interpretation of integral methods, allows confirmation that the thermal degradation mechanism for PASS in the crystal solvate system is a decelerated Rn type, which is a solid-state process based on a phase boundary controlled reaction, in the conversion range considered. Whereas, the pure PASS follows a decelerated Dn thermodegradation mechanism in the same conversion range.展开更多
A novel compound 5-(p-tolyl)-4-[2-(2,4-dichlorophenoxy)acetamido]-1,2,4-tria zole- 3-thione 2a has been synthesized by the reaction of 5-(p-tolyl)-4-amino-1,2,4-triazole-3-thione 1 with 2-(2,4-dich/orophenoxy)...A novel compound 5-(p-tolyl)-4-[2-(2,4-dichlorophenoxy)acetamido]-1,2,4-tria zole- 3-thione 2a has been synthesized by the reaction of 5-(p-tolyl)-4-amino-1,2,4-triazole-3-thione 1 with 2-(2,4-dich/orophenoxy)acetyl ch/oride. Interestingly, the title compound 2 was obtained when 2a crystallizes from a mixed solution of petroleum ether and ethyl acetate, and it has been characterized by elemental analysis, IR, ^1H NMR spectra and single-crystal X-ray diffraction. The crystal belongs to the triclinic system, space group P1 with a = 9.780(5), b = 10.876(6), c = 11.615(6) /A, a = 104.822(7), β= 94.105(6), ), = 94.305(6)°, V= 1185.7(11)/A3, Z = 2,μ = 0.397 mm^-1, Mr= 497.39, Dx= 1.393 g/cm^3, F(000) = 516, S = 1.097, the final R = 0.0730 and wR = 0.2133 for 4111 unique reflections (Rint = 0.0525) with 3212 observed ones. The dihedral angles made by the triazole ring with the methyl- and chloro-substituted benzene rings are 43.5(7) and 50.2(9)°, respectively. Some intra- and intermolecular hydrogen bonds together with C-H…π interactions existing in the lattice stabilize the crystal structure.展开更多
Two types of small iron clusters supported on γ-Al2O3-RT(dehydroxylated at room temperature) and γ-Al2O3-800 (dehydroxylated at 800 ℃) were prepared by solvated metal atom impregnation (SMAI) techniques. The ...Two types of small iron clusters supported on γ-Al2O3-RT(dehydroxylated at room temperature) and γ-Al2O3-800 (dehydroxylated at 800 ℃) were prepared by solvated metal atom impregnation (SMAI) techniques. The iron atom precursor complex, bis(toluene)iron(0) formed in the metal atom reactor, was impregnated into γ-Al2O3 having different concentrations of surface hydroxyl groups to study the effect of surface hydroxylation on the crucial stage of iron cluster formation. Catalysts prepared in this way were characterized by TEM, Mǒssbauer, and chemisorption measurements, and the results show that higher concentration of surface hydroxyl groups of γ-Al2O3-RT favors the formation of more positively charged supported iron cluster Fen/γ-Al2O3-RT, and the lower concentration of surface hydroxyl groups of γ-Al2O3-800 favors the formation of basically neutral supported iron cluster Fen/γ-Al2O3-800. The measured results also indicate that the higher concentration of surface hydroxyl groups causes the rapid decomposition of precursor complex, bis(toluene)iron(0), and favors the formation of relatively large iron cluster. Consequently, these two types of catalysts show different catalytic properties in Fischer-Tropsch reaction. The catalytic pattern of Fen/γ-Al2O3-RT in F-T reaction is similar to that of the unreduced γ-Fe2O3 and that of Fen/γ-Al2O3-800 is similar to that of the reduced α-Fe2O3.展开更多
Norfloxacin methanol solvate ( 1 -ethyl-6-fluoro- 1,4-dihydro-4-oxo-7-( 1 -piperazinyl)-3- quinoline carboxylic acid methanol solvate) has been prepared. The crystal and molecular structures of the title compound,...Norfloxacin methanol solvate ( 1 -ethyl-6-fluoro- 1,4-dihydro-4-oxo-7-( 1 -piperazinyl)-3- quinoline carboxylic acid methanol solvate) has been prepared. The crystal and molecular structures of the title compound, C16H18FN3O3·CH3OH·H2O, were determined by X-ray diffraction method. The compound crystallizes in monoclinic, space group P21/c with a = 7.8660(16), b = 22.525 (5), c = 10.253(2)A, β= 108.31°, Mr = 369.39, V = 1724.7(6)A^3, Z = 4, Dc= 1.423 g/cm^3, F(000) = 784, R = 0.0557 and wR = 0.1224. The TGA analysis indicates that it decomposes completely at 723.75℃.展开更多
Graphite is a universal host material for ion intercalation. Li+-graphite intercalation compounds (GICs) have been successfully utilized as the anode material in commercial lithium-ion batteries.Similarly, anion-graph...Graphite is a universal host material for ion intercalation. Li+-graphite intercalation compounds (GICs) have been successfully utilized as the anode material in commercial lithium-ion batteries.Similarly, anion-graphite intercalation compounds (AGICs) have been coming into their own in dual-ion batteries [1]. It is imperative to deepen an understanding of anion storage mechanisms in graphite electrode.展开更多
Omeprazole sodium(OMS), a typical non-hydrogen bond donors API, is only available in solvates so far, including monohydrate, ethanol solvate and methanol solvate. The methanol solvate was found for the first time. Sol...Omeprazole sodium(OMS), a typical non-hydrogen bond donors API, is only available in solvates so far, including monohydrate, ethanol solvate and methanol solvate. The methanol solvate was found for the first time. Solvate transformation thermodynamics of OMS was studied in this paper. First, the ternary phase diagrams forming two solvates for OMS in binary solvent mixtures including methanol + water, ethanol + water, and methanol+ ethanol were measured at temperature ranging of T =(278.15 to 313.15) K under atmospheric pressure. Further, the standard equilibrium constants of the solvate transformation reactions were evaluated according to the chemical reaction isothermal equation. The standard molar Gibbs free energy, the standard molar enthalpy, and the standard molar entropy of solvate transformation reactions were then calculated based on van't Hoff equation. Moreover, the thermodynamic stability of the OMS solvate was analyzed based on phase diagram. The results are of great importance to develop a crystallization process for manufacturing OMS solvate, and could be helpful to other solvate transformation research.展开更多
D-72 resin supported nickel-copper catalysts prepared by solvated metal atom impregnation (SMAI) were studied by magnetic measurements and X-ray photoelectron spectroscopy (XPS). The Ni particles on the catalysts are ...D-72 resin supported nickel-copper catalysts prepared by solvated metal atom impregnation (SMAI) were studied by magnetic measurements and X-ray photoelectron spectroscopy (XPS). The Ni particles on the catalysts are very highly dispersed and display superparamagnetic behaviour. Ni-Cu alloy clusters were found to be formed. The surface compositions are different from the bulk concentrations. In contrast with the surface enrichment in copper generally observed on conventional Ni-Cu catalysts, the surfaces of these catalysts are enriched in nickel. The nickel is in both zero and valent states, while copper is mainly in metallic state. Catalytic data show that the formation of Ni-Cu alloy clusters has a profound effect on the catalytic activities of the catalysts in the hydrogenation of furfural. The activity of the Ni:Cu ratio of one bimetallic catalysts is much higher than that of the Ni or Cu monometallic catalyst.展开更多
order to assess the promotional effects of La3+ on CO hydrogenation of Co/SiO2 catalyst, solvated metal atom impregnation (SMAI) method was used to prepare unpromoted 10% (mass fraction) Co/SiO2 and a series of La3+-p...order to assess the promotional effects of La3+ on CO hydrogenation of Co/SiO2 catalyst, solvated metal atom impregnation (SMAI) method was used to prepare unpromoted 10% (mass fraction) Co/SiO2 and a series of La3+-promoted 10% (mass fraction) Co/SiO2 catalyst with different La/Co atomic ratios (0.1, 0.3, 0.5). X-ray diffraction (XRD), and CO chemisorption measurements show that the cobalt particle size decreases as the La/Co ratios increase. X-ray photoelectron spectrescopy indicates that cobalt is in zero-valent state for all the samples. Catalytic test shows that the catalytic activity of La3+-promoted Co/SiO2 in CO hydrogenation is higher than that of unpromoted Co/SiO2, and enhances with the La/Co ratios increase. La3+ promotion also causes the enhanced selectivity of Co/SiO2 catalyst for higher hydrocarbon products.展开更多
Two kinds of small iron clusters supported on SiO2-200 (dehydroxylated at 200℃ and SiO2-600 (de-hydroxylated at 600℃) were prepared by Solvated Metal Atom Impregnation (SMAI) techniques. The iron atom precursor comp...Two kinds of small iron clusters supported on SiO2-200 (dehydroxylated at 200℃ and SiO2-600 (de-hydroxylated at 600℃) were prepared by Solvated Metal Atom Impregnation (SMAI) techniques. The iron atom precursor complex, bis (toluene) iron(0) formed in the metal atom reactor, was impregnated into SiO2 having different concentrations of surface hydroxyl groups to study the effect of surface hydroxylation on the crucial stage of iron cluster formation. Catalysts prepared in this way were characterized by THM, Mosbauer and chemisorption measurements, and the resules show that higher concentration of surface hydroxyl groups of SiO2-200 favours the formation of more positively charged support iron cluster Fen/SiO2-200 and the lower concentration of surface hydroxyl groups of SiO2-600 favours the formation of basically neutral supported iron cluster Fe2/SiO2-600. The measured results also indicate that the higher concentration of surface hydroxyl groups causes the precursor complex,bis(toluene) fron(0), to decompose more rapidly, and favours the formation of relatively large iron cluster. As a consequence, these two kinds of catalysts show different catalytic properties in Fischer-Tropsch reaction. The catalytic pattern of Fe/SiO2-200 in F-T reaction is similar to that of the unreduced a-Fe2O2, while Fe2/SiO2 -600 is similar to that of reduced α-Fe2O2.展开更多
Aqueous Zn-ion batteries(AZIBs)have attracted increasing attention in next-generation energy storage systems due to their high safety and economic.Unfortunately,the side reactions,dendrites and hydrogen evolution effe...Aqueous Zn-ion batteries(AZIBs)have attracted increasing attention in next-generation energy storage systems due to their high safety and economic.Unfortunately,the side reactions,dendrites and hydrogen evolution effects at the zinc anode interface in aqueous electrolytes seriously hinder the application of aqueous zinc-ion batteries.Here,we report a critical solvation strategy to achieve reversible zinc electrochemistry by introducing a small polar molecule acetonitrile to form a“catcher”to arrest active molecules(bound water molecules).The stable solvation structure of[Zn(H_(2)O)_(6)]^(2+)is capable of maintaining and completely inhibiting free water molecules.When[Zn(H_(2)O)_(6)]^(2+)is partially desolvated in the Helmholtz outer layer,the separated active molecules will be arrested by the“catcher”formed by the strong hydrogen bond N-H bond,ensuring the stable desolvation of Zn^(2+).The Zn||Zn symmetric battery can stably cycle for 2250 h at 1 mAh cm^(-2),Zn||V_(6)O_(13) full battery achieved a capacity retention rate of 99.2%after 10,000 cycles at 10 A g^(-1).This paper proposes a novel critical solvation strategy that paves the route for the construction of high-performance AZIBs.展开更多
The desolvation of erythromycin acetone solvate was investigated under non-isothermal conditions by a thermogravimetric analyzer. This paper emphasized the kinetic analysis of non-isothermal TG-DTA data by Achar metho...The desolvation of erythromycin acetone solvate was investigated under non-isothermal conditions by a thermogravimetric analyzer. This paper emphasized the kinetic analysis of non-isothermal TG-DTA data by Achar method and Coats-Redfern method to fit various solid-state reaction models, and to achieve kinetic parameters of desolvation. The mechanism of thermal desolvation was evaluated using the kinetic compensation effect. The results show that kinetics of desolvation of erythromycin acetone solvate was compatible with the mechanism of a two-dimensional diffusion controlled and was best expressed by Valensi equation. Corresponding to the integral method and the differential method, the activation energy of desolvation of erythromycin acetone solvate was estimated to be 51.26—57.11 kJ/mol, and the pre-exponential factor was 8.077×106 s-1—4.326×107 s-1, respectively.展开更多
Tautomers are structural isomers that readily interconvert and may exhibit diff erent properties.The eff ect of solvent on tautomeric equilibria in solution has been a subject of some research.Tautomer solvate is less...Tautomers are structural isomers that readily interconvert and may exhibit diff erent properties.The eff ect of solvent on tautomeric equilibria in solution has been a subject of some research.Tautomer solvate is less common,and the role of solvent in the crystallization of tautomer solvate remains an interesting topic.In this work,we used 6-amino-1,3-dimethyl-5-nitrosouracil(NAU)as the tautomeric model material,which can present in nitrone–enamine form(Tautomer A)or oxime–imine form(Tautomer B).A solvate with NAU/DMSO ratio of 1:1 was discovered and characterized using single/powder X-ray diff raction and thermogravimetry.The crystal structure of NAU·DMSO was determined for the fi rst time,where only Tautomer A was formed in the tautomeric crystal.Quantum chemical calculation and molecular dynamics simulation were conducted to determine the tautomeric form in DMSO solution.Electrostatic potential analysis,radial distribution function analysis,and binding energy suggested possible DMSO–NAU interaction modes and stable tautomer complexes in solution.Tautomer A-containing complexes were found to dominate in solution,as verifi ed by comparing predicted and experimental 1 H NMR spectra.Findings reveal that the hydrogen bonding between DMSO and NAU is similar in solution and in NAU–DMSO solvate crystal,which helps preserve the form of Tautomer A during solvate crystallization.展开更多
The molar extinction coefficients at the absorption maximum of the solvated electron spectrum have been evaluated to be 900,970,and 1000 mol^(-1).m^2 for 1,2-ethanediol (12ED),1,2-propanediol (12PD),and 1,3-propanedio...The molar extinction coefficients at the absorption maximum of the solvated electron spectrum have been evaluated to be 900,970,and 1000 mol^(-1).m^2 for 1,2-ethanediol (12ED),1,2-propanediol (12PD),and 1,3-propanediol (13PD),respectively.These values are two-third or three-fourth of the value usually reported in the published report. Picosecond pulse radiolysis studies have aided in depicting the radiolytic yield of the solvated electron in these sol- vents as a function of time from picosecond to microsecond.The radiolytic yield in these viscous solvents is found to be strongly different from that of the water solution.The temperature dependent absorption spectra of the solvated electron in 12ED,12PD,and 13PD have been also investigated.In all the three solvents,the optical spectra shift to the red with increasing temperature.While the shape of the spectra does not change in 13PD,a widening on the blue side of the absorption band is observed in 12ED and 12PD at elevated temperatures.展开更多
To conduct extensive research on the application of ionic liquids as collectors in mineral flotation,ethanol(EtOH)was used as a solvent to dissolve hydrophobic ionic liquids(ILs)to simplify the reagent regime.Interest...To conduct extensive research on the application of ionic liquids as collectors in mineral flotation,ethanol(EtOH)was used as a solvent to dissolve hydrophobic ionic liquids(ILs)to simplify the reagent regime.Interesting phenomena were observed in which EtOH exerted different effects on the flotation efficiency of two ILs with similar structures.When EtOH was used to dissolve 1-dodecyl-3-methylimidazolium chloride(C12[mim]Cl)and as a collector for pure quartz flotation tests at a concentration of 1×10^(−5)mol·L^(−1),quartz recovery increased from 23.77%to 77.91%compared with ILs dissolved in water.However,quartz recovery of 1-dodecyl-3-methylim-idazolium hexafluorophosphate(C12[mim]PF6)decreased from 60.45%to 24.52%under the same conditions.The conditional experi-ments under 1×10^(−5)mol·L^(−1)ILs for EtOH concentration and under 2vol%EtOH for ILs concentration confirmed this difference.After being affected by EtOH,the mixed ore flotation tests of quartz and hematite showed a decrease in the hematite concentrate grade and re-covery for the C12[mim]Cl collector,whereas the hematite concentrate grade and recovery for the C12[mim]PF6 collector increased.On the basis of these differences and observations of flotation foam,two-phase bubble observation tests were carried out.The EtOH promoted the foam height of two ILs during aeration.It accelerated static froth defoaming after aeration stopped,and the foam of C12[mim]PF6 de-foaming especially quickly.In the discussion of flotation tests and foam observation,an attempt was made to explain the reasons and mechanisms behind the diverse phenomena using the dynamic surface tension effect and solvation effect results from EtOH.The solva-tion effect was verified through Fourier transform infrared(FT-IR),X-ray photoelectron spectroscopy(XPS),and Zeta potential tests.Al-though EtOH affects the adsorption of ILs on the ore surface during flotation negatively,it holds an positive value of inhibiting foam mer-ging during flotation aeration and accelerating the defoaming of static foam.And induce more robust secondary enrichment in the mixed ore flotation of the C12[mim]PF6 collector,facilitating effective mixed ore separation even under inhibitor-free conditions.展开更多
Aqueous aluminum-ion batteries(AIBs)are promising candidates for large-scale energy storage due to the abundant resource reserve,high theoretical capacity,intrinsic safety,and low cost of Al.However,the development of...Aqueous aluminum-ion batteries(AIBs)are promising candidates for large-scale energy storage due to the abundant resource reserve,high theoretical capacity,intrinsic safety,and low cost of Al.However,the development of aqueous AIBs is constrained by the inefficient Al plating,inevitable parasitic side reactions,and the collapse of the cathode materials.Herein,we propose a novel Al^(3+)/Mn^(2+)hybrid electrolyte in a water-acetonitrile co-solvent system with a regulated solvation structure to realize cathode-free AIBs.The inclusion of acetonitrile as a co-solvent plays a crucial role in reducing the desolvation energy and suppressing side reactions.The introduction of Mn^(2+)can enable the reversible plating/stripping of Al-Mn alloy with reduced overpotentials on the anode and deposition/stripping of Al_(x)MnO_(2) on the cathodic current collector to realize cathode-free AIBs.The architected AIB delivers a high discharge capacity of 397.9 mAh g^(-1),coupled with superior rate capability and stable cycling performance.Moreover,the cathode-free AIB shows superior low-temperature performance and can operate at-20℃ for over 120 cycles.This work provides new ideas for developing high-performance and low-cost aqueous AIBs.展开更多
Aqueous zinc-ion batteries(AZIBs),known for their high safety,low cost,and environmental friendliness,have a wide range of potential applications in large-scale energy storage systems.However,the notorious dendrite gr...Aqueous zinc-ion batteries(AZIBs),known for their high safety,low cost,and environmental friendliness,have a wide range of potential applications in large-scale energy storage systems.However,the notorious dendrite growth and severe side reactions on the anode have significantly hindered their further practical development.Recent studies have shown that the solvation chemistry in the electrolyte is not only closely related to the barriers to the commercialization of AZIBs,but have also sparked a number of valuable ideas to address the challenges of AZIBs.Therefore,we systematically summarize and discuss the regulatory mechanisms of solvation chemistry in various types of electrolytes and the influence of the solvation environment on battery performance.The challenges and future directions for solvation strategies based on the electrolyte environment are proposed to improve their performance and expand their application in AZIBs.展开更多
Lithium-ion thermoelectrochemical cell(LTEC), featuring simultaneous energy conversion and storage, has emerged as promising candidate for low-grade heat harvesting. However, relatively poor thermosensitivity and heat...Lithium-ion thermoelectrochemical cell(LTEC), featuring simultaneous energy conversion and storage, has emerged as promising candidate for low-grade heat harvesting. However, relatively poor thermosensitivity and heat-to-current behavior limit the application of LTECs using LiPF_6 electrolyte. Introducing additives into bulk electrolyte is a reasonable strategy to solve such problem by modifying the solvation structure of electrolyte ions. In this work, we develop a dual-salt electrolyte with fluorosurfactant(FS) additive to achieve high thermopower and durability of LTECs during the conversion of low-grade heat into electricity. The addition of FS induces a unique Li~+ solvation with the aggregated double anions through a crowded electrolyte environment,resulting in an enhanced mobility kinetics of Li~+ as well as boosted thermoelectrochemical performances. By coupling optimized electrolyte with graphite electrode, a high thermopower of 13.8 mV K^(-1) and a normalized output power density of 3.99 mW m^(–2) K^(–2) as well as an outstanding output energy density of 607.96 J m^(-2) can be obtained.These results demonstrate that the optimization of electrolyte by regulating solvation structure will inject new vitality into the construction of thermoelectrochemical devices with attractive properties.展开更多
Rechargeable lithium-sulfur(Li-S)batteries,featuring high energy density,low cost,and environmental friendliness,have been dubbed as one of the most promising candidates to replace current commercial rechargeable Li-i...Rechargeable lithium-sulfur(Li-S)batteries,featuring high energy density,low cost,and environmental friendliness,have been dubbed as one of the most promising candidates to replace current commercial rechargeable Li-ion batteries.However,their practical deployment has long been plagued by the infamous“shuttle effect”of soluble Li polysulfides(LiPSs)and the rampant growth of Li dendrites.Therefore,it is important to specifically elucidate the solvation structure in the Li-S system and systematically summarize the feasibility strategies that can simultaneously suppress the shuttle effect and the growth of Li dendrites for practical applications.This review attempts to achieve this goal.In this review,we first introduce the importance of developing Li-S batteries and highlight the key challenges.Then,we revisit the working principles of Li-S batteries and underscore the fundamental understanding of LiPSs.Next,we summarize some representative characterization techniques and theoretical calculations applied to characterize the solvation structure of LiPSs.Afterward,we overview feasible designing strategies that can simultaneously suppress the shuttle effect of soluble LiPSs and the growth of Li dendrites.Finally,we conclude and propose personal insights and perspectives on the future development of Li-S batteries.We envisage that this timely review can provide some inspiration to build better Li-S batteries for promoting practical applications.展开更多
Aqueous zinc-ion batteries are regarded as the promising candidates for large-scale energy storage systems owing to low cost and high safety;however,their applications are restricted by their poor low-temperature perf...Aqueous zinc-ion batteries are regarded as the promising candidates for large-scale energy storage systems owing to low cost and high safety;however,their applications are restricted by their poor low-temperature performance.Herein,a low-temperature electrolyte for low-temperature aqueous zinc-ion batteries is designed by introducing low-polarity diglyme into an aqueous solution of Zn(ClO_(4))_(2).The diglyme disrupts the hydrogenbonding network of water and lowers the freezing point of the electrolyte to-105℃.The designed electrolyte achieves ionic conductivity up to16.18 mS cm^(-1)at-45℃.The diglyme and ClO_(4)^(-)reconfigure the solvated structure of Zn^(2+),which is more favorable for the desolvation of Zn^(2+)at low temperatures.In addition,the diglyme effectively suppresses the dendrites,hydrogen evolution reaction,and by-products of the zinc anode,improving the cycle stability of the battery.At-20℃,a Zn‖Zn symmetrical cell is cycled for 5200 h at 1 mA cm^(-2)and 1 mA h cm^(-2),and a Zn‖polyaniline battery achieves an ultra-long cycle life of 10000 times.This study sheds light on the future design of electrolytes with high ionic conductivity and easy desolvation at low temperatures for rechargeable batteries.展开更多
基金supported by the National Key Research and Development Programs(2021YFB2400400)Major Science and Technology Innovation Project of Hunan Province(2020GK10102020GK1014-4)+7 种基金National Natural Science Foundation of China(32201162)the 70th general grant of China Postdoctoral Science Foundation(2021M702947)Natural Science Foundation of Henan(232300420404)Key Scientific and Technological Project of Henan Province(232102320290,232102311156)Key Research Project Plan for Higher Education Institutions in Henan Province(24A150009,23B430011)Doctor Foundation of Henan University of Engineering(D2022002)the Science and Technology Innovation Program of Hunan Province(2023RC3154)the scientific research projects of Education Department of Hunan Province(23A0188)。
文摘Aqueous Zn metal batteries(AZMBs)with intrinsic safety,high energy density and low cost have been regarded as promising electrochemical energy storage devices.However,the parasitic reaction on metallic Zn anode and the incompatibility between electrode and electrolytes lead to the deterioration of electrochemical performance of AZMBs during the cycling.The critical point to achieve the stable cycling of AZMBs is to properly regulate the zinc ion solvated structure and transfer behavior between metallic Zn anode and electrolyte.In recent years,numerous achievements have been made to resolve the formation of Zn dendrite and interface incompatible issues faced by AZMBs via optimizing the sheath structure and transport capability of zinc ions at electrode-electrolyte interface.In this review,the challenges for metallic Zn anode and electrode-electrolyte interface in AZMBs including dendrite formation and interface characteristics are presented.Following the influences of different strategies involving designing advanced electrode structu re,artificial solid electrolyte interphase(SEI)on Zn anode and electrolyte engineering to regulate zinc ion solvated sheath structure and transport behavior are summarized and discussed.Finally,the perspectives for the future development of design strategies for dendrite-free Zn metal anode and long lifespan AZMBs are also given.
基金supported by the 863 program of China(No.2007AA 03Z561)
文摘The thermal degradation of poly(arylene sulfide sulfone)/N-methylpyrrolidone (PASS/NMP) crystal solvate was studied by thermogravimetric analysis (TGA) and was compared with pure PASS in order to determine the way in which the formation of the crystal solvate affected the thermal properties of the polymer. The activation energy of the solid state process was determined using Kissinger's method, which does not require knowledge of the reaction mechanism (RM), to be 174.18 kJ/mol which was lower than that for pure PASS (E = 214 kJ/mol). The study of master curves together with interpretation of integral methods, allows confirmation that the thermal degradation mechanism for PASS in the crystal solvate system is a decelerated Rn type, which is a solid-state process based on a phase boundary controlled reaction, in the conversion range considered. Whereas, the pure PASS follows a decelerated Dn thermodegradation mechanism in the same conversion range.
基金supported by the NN S F of China (No. 20672073)Shanghai Leading Academic Discipline (No. T0402)
文摘A novel compound 5-(p-tolyl)-4-[2-(2,4-dichlorophenoxy)acetamido]-1,2,4-tria zole- 3-thione 2a has been synthesized by the reaction of 5-(p-tolyl)-4-amino-1,2,4-triazole-3-thione 1 with 2-(2,4-dich/orophenoxy)acetyl ch/oride. Interestingly, the title compound 2 was obtained when 2a crystallizes from a mixed solution of petroleum ether and ethyl acetate, and it has been characterized by elemental analysis, IR, ^1H NMR spectra and single-crystal X-ray diffraction. The crystal belongs to the triclinic system, space group P1 with a = 9.780(5), b = 10.876(6), c = 11.615(6) /A, a = 104.822(7), β= 94.105(6), ), = 94.305(6)°, V= 1185.7(11)/A3, Z = 2,μ = 0.397 mm^-1, Mr= 497.39, Dx= 1.393 g/cm^3, F(000) = 516, S = 1.097, the final R = 0.0730 and wR = 0.2133 for 4111 unique reflections (Rint = 0.0525) with 3212 observed ones. The dihedral angles made by the triazole ring with the methyl- and chloro-substituted benzene rings are 43.5(7) and 50.2(9)°, respectively. Some intra- and intermolecular hydrogen bonds together with C-H…π interactions existing in the lattice stabilize the crystal structure.
文摘Two types of small iron clusters supported on γ-Al2O3-RT(dehydroxylated at room temperature) and γ-Al2O3-800 (dehydroxylated at 800 ℃) were prepared by solvated metal atom impregnation (SMAI) techniques. The iron atom precursor complex, bis(toluene)iron(0) formed in the metal atom reactor, was impregnated into γ-Al2O3 having different concentrations of surface hydroxyl groups to study the effect of surface hydroxylation on the crucial stage of iron cluster formation. Catalysts prepared in this way were characterized by TEM, Mǒssbauer, and chemisorption measurements, and the results show that higher concentration of surface hydroxyl groups of γ-Al2O3-RT favors the formation of more positively charged supported iron cluster Fen/γ-Al2O3-RT, and the lower concentration of surface hydroxyl groups of γ-Al2O3-800 favors the formation of basically neutral supported iron cluster Fen/γ-Al2O3-800. The measured results also indicate that the higher concentration of surface hydroxyl groups causes the rapid decomposition of precursor complex, bis(toluene)iron(0), and favors the formation of relatively large iron cluster. Consequently, these two types of catalysts show different catalytic properties in Fischer-Tropsch reaction. The catalytic pattern of Fen/γ-Al2O3-RT in F-T reaction is similar to that of the unreduced γ-Fe2O3 and that of Fen/γ-Al2O3-800 is similar to that of the reduced α-Fe2O3.
基金This work was supported by the Social Development Foundation of Jiangsu Province (No:BS2002043)
文摘Norfloxacin methanol solvate ( 1 -ethyl-6-fluoro- 1,4-dihydro-4-oxo-7-( 1 -piperazinyl)-3- quinoline carboxylic acid methanol solvate) has been prepared. The crystal and molecular structures of the title compound, C16H18FN3O3·CH3OH·H2O, were determined by X-ray diffraction method. The compound crystallizes in monoclinic, space group P21/c with a = 7.8660(16), b = 22.525 (5), c = 10.253(2)A, β= 108.31°, Mr = 369.39, V = 1724.7(6)A^3, Z = 4, Dc= 1.423 g/cm^3, F(000) = 784, R = 0.0557 and wR = 0.1224. The TGA analysis indicates that it decomposes completely at 723.75℃.
基金financially supported by the National Natural Science Foundation of China(21975251)。
文摘Graphite is a universal host material for ion intercalation. Li+-graphite intercalation compounds (GICs) have been successfully utilized as the anode material in commercial lithium-ion batteries.Similarly, anion-graphite intercalation compounds (AGICs) have been coming into their own in dual-ion batteries [1]. It is imperative to deepen an understanding of anion storage mechanisms in graphite electrode.
基金Supported by the National Natural Science Foundation of China(21776203 and 21576187)the Tianjin Municipal Natural Science Foundation(18JCYBJC21100)
文摘Omeprazole sodium(OMS), a typical non-hydrogen bond donors API, is only available in solvates so far, including monohydrate, ethanol solvate and methanol solvate. The methanol solvate was found for the first time. Solvate transformation thermodynamics of OMS was studied in this paper. First, the ternary phase diagrams forming two solvates for OMS in binary solvent mixtures including methanol + water, ethanol + water, and methanol+ ethanol were measured at temperature ranging of T =(278.15 to 313.15) K under atmospheric pressure. Further, the standard equilibrium constants of the solvate transformation reactions were evaluated according to the chemical reaction isothermal equation. The standard molar Gibbs free energy, the standard molar enthalpy, and the standard molar entropy of solvate transformation reactions were then calculated based on van't Hoff equation. Moreover, the thermodynamic stability of the OMS solvate was analyzed based on phase diagram. The results are of great importance to develop a crystallization process for manufacturing OMS solvate, and could be helpful to other solvate transformation research.
文摘D-72 resin supported nickel-copper catalysts prepared by solvated metal atom impregnation (SMAI) were studied by magnetic measurements and X-ray photoelectron spectroscopy (XPS). The Ni particles on the catalysts are very highly dispersed and display superparamagnetic behaviour. Ni-Cu alloy clusters were found to be formed. The surface compositions are different from the bulk concentrations. In contrast with the surface enrichment in copper generally observed on conventional Ni-Cu catalysts, the surfaces of these catalysts are enriched in nickel. The nickel is in both zero and valent states, while copper is mainly in metallic state. Catalytic data show that the formation of Ni-Cu alloy clusters has a profound effect on the catalytic activities of the catalysts in the hydrogenation of furfural. The activity of the Ni:Cu ratio of one bimetallic catalysts is much higher than that of the Ni or Cu monometallic catalyst.
文摘order to assess the promotional effects of La3+ on CO hydrogenation of Co/SiO2 catalyst, solvated metal atom impregnation (SMAI) method was used to prepare unpromoted 10% (mass fraction) Co/SiO2 and a series of La3+-promoted 10% (mass fraction) Co/SiO2 catalyst with different La/Co atomic ratios (0.1, 0.3, 0.5). X-ray diffraction (XRD), and CO chemisorption measurements show that the cobalt particle size decreases as the La/Co ratios increase. X-ray photoelectron spectrescopy indicates that cobalt is in zero-valent state for all the samples. Catalytic test shows that the catalytic activity of La3+-promoted Co/SiO2 in CO hydrogenation is higher than that of unpromoted Co/SiO2, and enhances with the La/Co ratios increase. La3+ promotion also causes the enhanced selectivity of Co/SiO2 catalyst for higher hydrocarbon products.
文摘Two kinds of small iron clusters supported on SiO2-200 (dehydroxylated at 200℃ and SiO2-600 (de-hydroxylated at 600℃) were prepared by Solvated Metal Atom Impregnation (SMAI) techniques. The iron atom precursor complex, bis (toluene) iron(0) formed in the metal atom reactor, was impregnated into SiO2 having different concentrations of surface hydroxyl groups to study the effect of surface hydroxylation on the crucial stage of iron cluster formation. Catalysts prepared in this way were characterized by THM, Mosbauer and chemisorption measurements, and the resules show that higher concentration of surface hydroxyl groups of SiO2-200 favours the formation of more positively charged support iron cluster Fen/SiO2-200 and the lower concentration of surface hydroxyl groups of SiO2-600 favours the formation of basically neutral supported iron cluster Fe2/SiO2-600. The measured results also indicate that the higher concentration of surface hydroxyl groups causes the precursor complex,bis(toluene) fron(0), to decompose more rapidly, and favours the formation of relatively large iron cluster. As a consequence, these two kinds of catalysts show different catalytic properties in Fischer-Tropsch reaction. The catalytic pattern of Fe/SiO2-200 in F-T reaction is similar to that of the unreduced a-Fe2O2, while Fe2/SiO2 -600 is similar to that of reduced α-Fe2O2.
基金supported by the National Natural Science Foundation of China(No.52272198 and 52002122)the Project funded by China Postdoctoral Science Foundation(No.2021M690947).
文摘Aqueous Zn-ion batteries(AZIBs)have attracted increasing attention in next-generation energy storage systems due to their high safety and economic.Unfortunately,the side reactions,dendrites and hydrogen evolution effects at the zinc anode interface in aqueous electrolytes seriously hinder the application of aqueous zinc-ion batteries.Here,we report a critical solvation strategy to achieve reversible zinc electrochemistry by introducing a small polar molecule acetonitrile to form a“catcher”to arrest active molecules(bound water molecules).The stable solvation structure of[Zn(H_(2)O)_(6)]^(2+)is capable of maintaining and completely inhibiting free water molecules.When[Zn(H_(2)O)_(6)]^(2+)is partially desolvated in the Helmholtz outer layer,the separated active molecules will be arrested by the“catcher”formed by the strong hydrogen bond N-H bond,ensuring the stable desolvation of Zn^(2+).The Zn||Zn symmetric battery can stably cycle for 2250 h at 1 mAh cm^(-2),Zn||V_(6)O_(13) full battery achieved a capacity retention rate of 99.2%after 10,000 cycles at 10 A g^(-1).This paper proposes a novel critical solvation strategy that paves the route for the construction of high-performance AZIBs.
文摘The desolvation of erythromycin acetone solvate was investigated under non-isothermal conditions by a thermogravimetric analyzer. This paper emphasized the kinetic analysis of non-isothermal TG-DTA data by Achar method and Coats-Redfern method to fit various solid-state reaction models, and to achieve kinetic parameters of desolvation. The mechanism of thermal desolvation was evaluated using the kinetic compensation effect. The results show that kinetics of desolvation of erythromycin acetone solvate was compatible with the mechanism of a two-dimensional diffusion controlled and was best expressed by Valensi equation. Corresponding to the integral method and the differential method, the activation energy of desolvation of erythromycin acetone solvate was estimated to be 51.26—57.11 kJ/mol, and the pre-exponential factor was 8.077×106 s-1—4.326×107 s-1, respectively.
基金The authors thank the fi nancial support from the National Natural Science Foundation of China(No.21776204).
文摘Tautomers are structural isomers that readily interconvert and may exhibit diff erent properties.The eff ect of solvent on tautomeric equilibria in solution has been a subject of some research.Tautomer solvate is less common,and the role of solvent in the crystallization of tautomer solvate remains an interesting topic.In this work,we used 6-amino-1,3-dimethyl-5-nitrosouracil(NAU)as the tautomeric model material,which can present in nitrone–enamine form(Tautomer A)or oxime–imine form(Tautomer B).A solvate with NAU/DMSO ratio of 1:1 was discovered and characterized using single/powder X-ray diff raction and thermogravimetry.The crystal structure of NAU·DMSO was determined for the fi rst time,where only Tautomer A was formed in the tautomeric crystal.Quantum chemical calculation and molecular dynamics simulation were conducted to determine the tautomeric form in DMSO solution.Electrostatic potential analysis,radial distribution function analysis,and binding energy suggested possible DMSO–NAU interaction modes and stable tautomer complexes in solution.Tautomer A-containing complexes were found to dominate in solution,as verifi ed by comparing predicted and experimental 1 H NMR spectra.Findings reveal that the hydrogen bonding between DMSO and NAU is similar in solution and in NAU–DMSO solvate crystal,which helps preserve the form of Tautomer A during solvate crystallization.
文摘The molar extinction coefficients at the absorption maximum of the solvated electron spectrum have been evaluated to be 900,970,and 1000 mol^(-1).m^2 for 1,2-ethanediol (12ED),1,2-propanediol (12PD),and 1,3-propanediol (13PD),respectively.These values are two-third or three-fourth of the value usually reported in the published report. Picosecond pulse radiolysis studies have aided in depicting the radiolytic yield of the solvated electron in these sol- vents as a function of time from picosecond to microsecond.The radiolytic yield in these viscous solvents is found to be strongly different from that of the water solution.The temperature dependent absorption spectra of the solvated electron in 12ED,12PD,and 13PD have been also investigated.In all the three solvents,the optical spectra shift to the red with increasing temperature.While the shape of the spectra does not change in 13PD,a widening on the blue side of the absorption band is observed in 12ED and 12PD at elevated temperatures.
基金supported by the National Natural Science Foundation of China(No.51874221)the Open Foundation of Guangxi Key Laboratory of Processing for Nonferrous Metals and Featured Materials,Guangxi University(No.2022GXYSOF 11).
文摘To conduct extensive research on the application of ionic liquids as collectors in mineral flotation,ethanol(EtOH)was used as a solvent to dissolve hydrophobic ionic liquids(ILs)to simplify the reagent regime.Interesting phenomena were observed in which EtOH exerted different effects on the flotation efficiency of two ILs with similar structures.When EtOH was used to dissolve 1-dodecyl-3-methylimidazolium chloride(C12[mim]Cl)and as a collector for pure quartz flotation tests at a concentration of 1×10^(−5)mol·L^(−1),quartz recovery increased from 23.77%to 77.91%compared with ILs dissolved in water.However,quartz recovery of 1-dodecyl-3-methylim-idazolium hexafluorophosphate(C12[mim]PF6)decreased from 60.45%to 24.52%under the same conditions.The conditional experi-ments under 1×10^(−5)mol·L^(−1)ILs for EtOH concentration and under 2vol%EtOH for ILs concentration confirmed this difference.After being affected by EtOH,the mixed ore flotation tests of quartz and hematite showed a decrease in the hematite concentrate grade and re-covery for the C12[mim]Cl collector,whereas the hematite concentrate grade and recovery for the C12[mim]PF6 collector increased.On the basis of these differences and observations of flotation foam,two-phase bubble observation tests were carried out.The EtOH promoted the foam height of two ILs during aeration.It accelerated static froth defoaming after aeration stopped,and the foam of C12[mim]PF6 de-foaming especially quickly.In the discussion of flotation tests and foam observation,an attempt was made to explain the reasons and mechanisms behind the diverse phenomena using the dynamic surface tension effect and solvation effect results from EtOH.The solva-tion effect was verified through Fourier transform infrared(FT-IR),X-ray photoelectron spectroscopy(XPS),and Zeta potential tests.Al-though EtOH affects the adsorption of ILs on the ore surface during flotation negatively,it holds an positive value of inhibiting foam mer-ging during flotation aeration and accelerating the defoaming of static foam.And induce more robust secondary enrichment in the mixed ore flotation of the C12[mim]PF6 collector,facilitating effective mixed ore separation even under inhibitor-free conditions.
基金financially supported by the National Natural Science Foundation of China(No.52274302)。
文摘Aqueous aluminum-ion batteries(AIBs)are promising candidates for large-scale energy storage due to the abundant resource reserve,high theoretical capacity,intrinsic safety,and low cost of Al.However,the development of aqueous AIBs is constrained by the inefficient Al plating,inevitable parasitic side reactions,and the collapse of the cathode materials.Herein,we propose a novel Al^(3+)/Mn^(2+)hybrid electrolyte in a water-acetonitrile co-solvent system with a regulated solvation structure to realize cathode-free AIBs.The inclusion of acetonitrile as a co-solvent plays a crucial role in reducing the desolvation energy and suppressing side reactions.The introduction of Mn^(2+)can enable the reversible plating/stripping of Al-Mn alloy with reduced overpotentials on the anode and deposition/stripping of Al_(x)MnO_(2) on the cathodic current collector to realize cathode-free AIBs.The architected AIB delivers a high discharge capacity of 397.9 mAh g^(-1),coupled with superior rate capability and stable cycling performance.Moreover,the cathode-free AIB shows superior low-temperature performance and can operate at-20℃ for over 120 cycles.This work provides new ideas for developing high-performance and low-cost aqueous AIBs.
基金supported by grants from the Major Basic Research Projects of Shandong Natural Science Foundation(ZR2020ZD07)the Key Scientific and Technological Innovation Project of Shandong(2020CXGC010401).
文摘Aqueous zinc-ion batteries(AZIBs),known for their high safety,low cost,and environmental friendliness,have a wide range of potential applications in large-scale energy storage systems.However,the notorious dendrite growth and severe side reactions on the anode have significantly hindered their further practical development.Recent studies have shown that the solvation chemistry in the electrolyte is not only closely related to the barriers to the commercialization of AZIBs,but have also sparked a number of valuable ideas to address the challenges of AZIBs.Therefore,we systematically summarize and discuss the regulatory mechanisms of solvation chemistry in various types of electrolytes and the influence of the solvation environment on battery performance.The challenges and future directions for solvation strategies based on the electrolyte environment are proposed to improve their performance and expand their application in AZIBs.
基金supported by the Leading Edge Technology of Jiangsu Province (BK20220009, BK20202008)Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)。
文摘Lithium-ion thermoelectrochemical cell(LTEC), featuring simultaneous energy conversion and storage, has emerged as promising candidate for low-grade heat harvesting. However, relatively poor thermosensitivity and heat-to-current behavior limit the application of LTECs using LiPF_6 electrolyte. Introducing additives into bulk electrolyte is a reasonable strategy to solve such problem by modifying the solvation structure of electrolyte ions. In this work, we develop a dual-salt electrolyte with fluorosurfactant(FS) additive to achieve high thermopower and durability of LTECs during the conversion of low-grade heat into electricity. The addition of FS induces a unique Li~+ solvation with the aggregated double anions through a crowded electrolyte environment,resulting in an enhanced mobility kinetics of Li~+ as well as boosted thermoelectrochemical performances. By coupling optimized electrolyte with graphite electrode, a high thermopower of 13.8 mV K^(-1) and a normalized output power density of 3.99 mW m^(–2) K^(–2) as well as an outstanding output energy density of 607.96 J m^(-2) can be obtained.These results demonstrate that the optimization of electrolyte by regulating solvation structure will inject new vitality into the construction of thermoelectrochemical devices with attractive properties.
基金financially supported by the National Natural Science Foundation of China(51972064 and 52222315)
文摘Rechargeable lithium-sulfur(Li-S)batteries,featuring high energy density,low cost,and environmental friendliness,have been dubbed as one of the most promising candidates to replace current commercial rechargeable Li-ion batteries.However,their practical deployment has long been plagued by the infamous“shuttle effect”of soluble Li polysulfides(LiPSs)and the rampant growth of Li dendrites.Therefore,it is important to specifically elucidate the solvation structure in the Li-S system and systematically summarize the feasibility strategies that can simultaneously suppress the shuttle effect and the growth of Li dendrites for practical applications.This review attempts to achieve this goal.In this review,we first introduce the importance of developing Li-S batteries and highlight the key challenges.Then,we revisit the working principles of Li-S batteries and underscore the fundamental understanding of LiPSs.Next,we summarize some representative characterization techniques and theoretical calculations applied to characterize the solvation structure of LiPSs.Afterward,we overview feasible designing strategies that can simultaneously suppress the shuttle effect of soluble LiPSs and the growth of Li dendrites.Finally,we conclude and propose personal insights and perspectives on the future development of Li-S batteries.We envisage that this timely review can provide some inspiration to build better Li-S batteries for promoting practical applications.
文摘Aqueous zinc-ion batteries are regarded as the promising candidates for large-scale energy storage systems owing to low cost and high safety;however,their applications are restricted by their poor low-temperature performance.Herein,a low-temperature electrolyte for low-temperature aqueous zinc-ion batteries is designed by introducing low-polarity diglyme into an aqueous solution of Zn(ClO_(4))_(2).The diglyme disrupts the hydrogenbonding network of water and lowers the freezing point of the electrolyte to-105℃.The designed electrolyte achieves ionic conductivity up to16.18 mS cm^(-1)at-45℃.The diglyme and ClO_(4)^(-)reconfigure the solvated structure of Zn^(2+),which is more favorable for the desolvation of Zn^(2+)at low temperatures.In addition,the diglyme effectively suppresses the dendrites,hydrogen evolution reaction,and by-products of the zinc anode,improving the cycle stability of the battery.At-20℃,a Zn‖Zn symmetrical cell is cycled for 5200 h at 1 mA cm^(-2)and 1 mA h cm^(-2),and a Zn‖polyaniline battery achieves an ultra-long cycle life of 10000 times.This study sheds light on the future design of electrolytes with high ionic conductivity and easy desolvation at low temperatures for rechargeable batteries.