Nicotinamide adenine dinucleotide(NAD+)plays an essential role in cellular metabolism,mitochondrial homeostasis,inflammation,and senescence.However,the role of NAD+-regulated genes,including coding and long non-coding...Nicotinamide adenine dinucleotide(NAD+)plays an essential role in cellular metabolism,mitochondrial homeostasis,inflammation,and senescence.However,the role of NAD+-regulated genes,including coding and long non-coding genes in cancer development is poorly understood.We constructed a prediction model based on the expression level of NAD+metabolism-related genes(NMRGs).Furthermore,we validated the expression of NMRGs in gastric cancer(GC)tissues and cell lines;additionally,β-nicotinamide mononucleotide(NMN),a precursor of NAD+,was used to treat the GC cell lines to analyze its effects on the expression level of NMRGs lncRNAs and cellular proliferation,cell cycle,apoptosis,and senescence-associated secretory phenotype(SASP).A total of 13 NMRGs-related lncRNAs were selected to construct prognostic risk signatures,and patients with high-risk scores had a poor prognosis.Some immune checkpoint genes were upregulated in the high-risk group.In addition,cell cycle,epigenetics,and senescence were significantly downregulated in the high-risk group.Notably,we found that the levels of immune cell infiltration,including CD8 T cells,CD4 naïve T cells,CD4 memory-activated T cells,B memory cells,and naïve B cells,were significantly associated with risk scores.Furthermore,the treatment of NMN showed increased proliferation of AGS and MKN45 cells.In addition,the expression of SASP factors(IL6,IL8,IL10,TGF-β,and TNF-α)was significantly decreased after NMN treatment.We conclude that the lncRNAs associated with NAD+metabolism can potentially be used as biomarkers for predicting clinical outcomes of GC patients.展开更多
Background:Aldo-keto oxidoreductase(AKR)inhibitors could reverse the resistance of several cancer cells to cis-platin,but their role in resistance remains unclear.Methods:We verified the difference of AKR1Cs expressio...Background:Aldo-keto oxidoreductase(AKR)inhibitors could reverse the resistance of several cancer cells to cis-platin,but their role in resistance remains unclear.Methods:We verified the difference of AKR1Cs expression by Western blot,RNA sequencing and qRT-PCR.The differences of AKR1Cs expression were analyzed and inferred.Use Assay of NADH and NAD^(+)content to verify the inference.The Docking experience was used to verify the affinity between MPA,MCFLA,MLS and AKR1C3.Results:Our RNA-seq results showed de novo NAD biosynthesis-related genes and NAD(P)H-dependent oxidoreductases were significantly upregulated in cis-platin-resistant HepG2 hepatic cancer cells(HepG2-RC cells)compared with HepG2 cells.At least 63 NAD(P)H-dependent reductase/oxidases were upregulated in HepG2-RC cells at least twofold.Knockdown of AKR1Cs could increase cis-platin sensitivity in HepG2-RC cells about two-fold.Interestingly,the AKR1C inhibitor meclofenamic acid could increase the cis-platin sensitivity of HepG2-RC cells about eight-fold,indicating that the knockdown of AKR1Cs only partially reversed the resistance.Meanwhile,the amount of total NAD and the ratio of NADH/NAD^(+)were increased in HepG2-RC cells compared with HepG2 cells.The ratio of NADH/NAD^(+)in HepG2-RC cells was almost seven-fold higher than in HepG2 or HL-7702 cells.Increased NADH expression could be explained as a directly operating antioxidant to scavenge cis-platin-induced radicals.Conclusion:We report here that NADH,which is produced by NAD(P)Hdependent oxidoreductases,plays a key role in the AKR-associated cis-platin resistance of HepG2 hepatic cancer cells.展开更多
目的在兰科石斛属药用植物鉴定中应用新的分子标记。方法扩增并测定9种石斛属植物线粒体中NADH脱氢酶亚基1编码基因(nad 1)内含子2(in tron 2)的全长序列。结果比对后的nad 1 in tron 2序列长872bp,其中有17个变异位点,可以鉴别除粉花石...目的在兰科石斛属药用植物鉴定中应用新的分子标记。方法扩增并测定9种石斛属植物线粒体中NADH脱氢酶亚基1编码基因(nad 1)内含子2(in tron 2)的全长序列。结果比对后的nad 1 in tron 2序列长872bp,其中有17个变异位点,可以鉴别除粉花石斛D end robium lodd ig esii以外的8种植物。结论线粒体nad 1 in tron2序列可以作为一种新的分子标记用于石斛属植物的鉴定。展开更多
基金supported by Zhengzhou Major Collaborative Innovation Project(No.18XTZX12003)Key Projects of Discipline Construction in Zhengzhou University(No.XKZDJC202001)+1 种基金National Key Research and Development Program in China(No.2020YFC2006100)Medical Service Capacity Improvement Project of Henan Province in China(Grant Number Yu Wei Medicine[2017]No.66).
文摘Nicotinamide adenine dinucleotide(NAD+)plays an essential role in cellular metabolism,mitochondrial homeostasis,inflammation,and senescence.However,the role of NAD+-regulated genes,including coding and long non-coding genes in cancer development is poorly understood.We constructed a prediction model based on the expression level of NAD+metabolism-related genes(NMRGs).Furthermore,we validated the expression of NMRGs in gastric cancer(GC)tissues and cell lines;additionally,β-nicotinamide mononucleotide(NMN),a precursor of NAD+,was used to treat the GC cell lines to analyze its effects on the expression level of NMRGs lncRNAs and cellular proliferation,cell cycle,apoptosis,and senescence-associated secretory phenotype(SASP).A total of 13 NMRGs-related lncRNAs were selected to construct prognostic risk signatures,and patients with high-risk scores had a poor prognosis.Some immune checkpoint genes were upregulated in the high-risk group.In addition,cell cycle,epigenetics,and senescence were significantly downregulated in the high-risk group.Notably,we found that the levels of immune cell infiltration,including CD8 T cells,CD4 naïve T cells,CD4 memory-activated T cells,B memory cells,and naïve B cells,were significantly associated with risk scores.Furthermore,the treatment of NMN showed increased proliferation of AGS and MKN45 cells.In addition,the expression of SASP factors(IL6,IL8,IL10,TGF-β,and TNF-α)was significantly decreased after NMN treatment.We conclude that the lncRNAs associated with NAD+metabolism can potentially be used as biomarkers for predicting clinical outcomes of GC patients.
基金supported by the Science and Technology Development Plan Project of Jilin Province,China[20200708101YY]The Foundation of Jilin Province Science and Technology Department[20200801062GH].
文摘Background:Aldo-keto oxidoreductase(AKR)inhibitors could reverse the resistance of several cancer cells to cis-platin,but their role in resistance remains unclear.Methods:We verified the difference of AKR1Cs expression by Western blot,RNA sequencing and qRT-PCR.The differences of AKR1Cs expression were analyzed and inferred.Use Assay of NADH and NAD^(+)content to verify the inference.The Docking experience was used to verify the affinity between MPA,MCFLA,MLS and AKR1C3.Results:Our RNA-seq results showed de novo NAD biosynthesis-related genes and NAD(P)H-dependent oxidoreductases were significantly upregulated in cis-platin-resistant HepG2 hepatic cancer cells(HepG2-RC cells)compared with HepG2 cells.At least 63 NAD(P)H-dependent reductase/oxidases were upregulated in HepG2-RC cells at least twofold.Knockdown of AKR1Cs could increase cis-platin sensitivity in HepG2-RC cells about two-fold.Interestingly,the AKR1C inhibitor meclofenamic acid could increase the cis-platin sensitivity of HepG2-RC cells about eight-fold,indicating that the knockdown of AKR1Cs only partially reversed the resistance.Meanwhile,the amount of total NAD and the ratio of NADH/NAD^(+)were increased in HepG2-RC cells compared with HepG2 cells.The ratio of NADH/NAD^(+)in HepG2-RC cells was almost seven-fold higher than in HepG2 or HL-7702 cells.Increased NADH expression could be explained as a directly operating antioxidant to scavenge cis-platin-induced radicals.Conclusion:We report here that NADH,which is produced by NAD(P)Hdependent oxidoreductases,plays a key role in the AKR-associated cis-platin resistance of HepG2 hepatic cancer cells.
文摘目的在兰科石斛属药用植物鉴定中应用新的分子标记。方法扩增并测定9种石斛属植物线粒体中NADH脱氢酶亚基1编码基因(nad 1)内含子2(in tron 2)的全长序列。结果比对后的nad 1 in tron 2序列长872bp,其中有17个变异位点,可以鉴别除粉花石斛D end robium lodd ig esii以外的8种植物。结论线粒体nad 1 in tron2序列可以作为一种新的分子标记用于石斛属植物的鉴定。