Diseases like Alzheimer’s and Parkinson’s diseases are defined by inflammation and the damage neurons undergo due to oxidative stress. A primary reactive oxygen species contributor in the central nervous system, NAD...Diseases like Alzheimer’s and Parkinson’s diseases are defined by inflammation and the damage neurons undergo due to oxidative stress. A primary reactive oxygen species contributor in the central nervous system, NADPH oxidase 4, is viewed as a potential therapeutic touchstone and indicative marker for these ailments. This in-depth review brings to light distinct features of NADPH oxidase 4, responsible for generating superoxide and hydrogen peroxide, emphasizing its pivotal role in activating glial cells, inciting inflammation, and disturbing neuronal functions. Significantly, malfunctioning astrocytes, forming the majority in the central nervous system, play a part in advancing neurodegenerative diseases, due to their reactive oxygen species and inflammatory factor secretion. Our study reveals that aiming at NADPH oxidase 4 within astrocytes could be a viable treatment pathway to reduce oxidative damage and halt neurodegenerative processes. Adjusting NADPH oxidase 4 activity might influence the neuroinflammatory cytokine levels, including myeloperoxidase and osteopontin, offering better prospects for conditions like Alzheimer’s disease and Parkinson’s disease. This review sheds light on the role of NADPH oxidase 4 in neural degeneration, emphasizing its drug target potential, and paving the path for novel treatment approaches to combat these severe conditions.展开更多
Endogenous elicitor, termed cellulase-degraded cell wall (CDW), was prepared from the cell wall of suspension-cultured ginseng (Panax ginseng C.A. Meyer) cells via cellulase degradation. CDW activated the NADPH oxidas...Endogenous elicitor, termed cellulase-degraded cell wall (CDW), was prepared from the cell wall of suspension-cultured ginseng (Panax ginseng C.A. Meyer) cells via cellulase degradation. CDW activated the NADPH oxidase activity of isolated plasma membranes and stimulated in vivo H2O2 generation in ginseng cell suspensions. CDW also increased the activity of phenylalanine ammonia lyase (PAL), expression of a P. ginseng squalene epoxidase (sqe) gene and saponin synthesis. NADPH oxidase inhibitors inhibited both in vitro NADPH oxidase activity and in vivo H2O2 generation. Induction of PAL activity, saponin synthesis and sqe gene expression were all inhibited by such inhibitor treatments and reduced by incubation with catalase and HA scavengers. These data indicate that activation of NADPH oxidase and generation of H2O2 are essential signalling events mediating defence responses induced by the endogenous elicitor(s) present in CDW.展开更多
Intracerebral hemorrhage is often accompanied by oxidative stress induced by reactive oxygen species,which causes abnormal mitochondrial function and secondary reactive oxygen species generation.This creates a vicious...Intracerebral hemorrhage is often accompanied by oxidative stress induced by reactive oxygen species,which causes abnormal mitochondrial function and secondary reactive oxygen species generation.This creates a vicious cycle leading to reactive oxygen species accumulation,resulting in progression of the pathological process.Therefore,breaking the cycle to inhibit reactive oxygen species accumulation is critical for reducing neuronal death after intracerebral hemorrhage.Our previous study found that increased expression of nicotinamide adenine dinucleotide phosphate oxidase 4(NADPH oxidase 4,NOX4)led to neuronal apoptosis and damage to the blood-brain barrier after intracerebral hemorrhage.The purpose of this study was to investigate the role of NOX4 in the circle involving the neuronal tolerance to oxidative stress,mitochondrial reactive oxygen species and modes of neuronal death other than apoptosis after intracerebral hemorrhage.We found that NOX4 knockdown by adeno-associated virus(AAV-NOX4)in rats enhanced neuronal tolerance to oxidative stress,enabling them to better resist the oxidative stress caused by intracerebral hemorrhage.Knockdown of NOX4 also reduced the production of reactive oxygen species in the mitochondria,relieved mitochondrial damage,prevented secondary reactive oxygen species accumulation,reduced neuronal pyroptosis and contributed to relieving secondary brain injury after intracerebral hemorrhage in rats.Finally,we used a mitochondria-targeted superoxide dismutase mimetic to explore the relationship between reactive oxygen species and NOX4.The mitochondria-targeted superoxide dismutase mimetic inhibited the expression of NOX4 and neuronal pyroptosis,which is similar to the effect of AAV-NOX4.This indicates that NOX4 is likely to be an important target for inhibiting mitochondrial reactive oxygen species production,and NOX4 inhibitors can be used to alleviate oxidative stress response induced by intracerebral hemorrhage.展开更多
Increased reactive oxygen species by the activation of NADPH oxidase(NOX) contributes to the development of diabetic complications.Apocynin,a NOX inhibitor,increases sciatic nerve conductance and blood flow in diabe...Increased reactive oxygen species by the activation of NADPH oxidase(NOX) contributes to the development of diabetic complications.Apocynin,a NOX inhibitor,increases sciatic nerve conductance and blood flow in diabetic rats.We investigated potential protective effect of apocynin in rat diabetic neuropathy and its precise mechanism of action at molecular level.Rat models of streptozotocin-induced diabetes were treated with apocynin(30 and 100 mg/kg per day,intragastrically) for 4 weeks.Mechanical hyperalgesia and allodynia were determined weekly using analgesimeter and dynamic plantar aesthesiometer.Western blot analysis and histochemistry/immunohistochemistry were performed in the lumbar spinal cord and sciatic nerve respectively.Streptozotocin injection reduced pain threshold in analgesimeter,but not in aesthesiometer.Apocynin treatment increased pain threshold dose-dependently.Western blot analysis showed an increase in catalase and NOX-p47 phox protein expression in the spinal cord.However,protein expressions of neuronal and inducible nitric oxide synthase(n NOS,i NOS),superoxide dismutase,glutathion peroxidase,nitrotyrosine,tumor necrosis factor-α,interleukin-6,interleukin-1β,aldose reductase,cyclooxygenase-2 or MAC-1(marker for increased microgliosis) in the spinal cord remained unchanged.Western blot analysis results also demonstrated that apocynin decreased NOX-p47 phox expression at both doses and catalase expression at 100 mg/kg per day.Histochemistry of diabetic sciatic nerve revealed marked degeneration.n NOS and i NOS immunoreactivities were increased,while S-100 immunoreactivity(Schwann cell marker) was decreased in sciatic nerve.Apocynin treatment reversed these changes dose-dependently.In conclusion,decreased pain threshold of diabetic rats was accompanied by increased NOX and catalase expression in the spinal cord and increased degeneration in the sciatic nerve characterized by increased NOS expression and Schwann cell loss.Apocynin treatment attenuates neuropathic pain by decelerating the increased oxidative stress-mediated pathogenesis in diabetic rats.展开更多
A rapid and concentration-dependent generation of superoxide anion (·O2^-), measured with a superoxide-specific Cypridina luciferin-derived chemiluminescent reagent, was observed when two lanthanide salts (LaC...A rapid and concentration-dependent generation of superoxide anion (·O2^-), measured with a superoxide-specific Cypridina luciferin-derived chemiluminescent reagent, was observed when two lanthanide salts (LaCl3 and CdCl3 ) were added to tobacco ( Nicotiana tabacum) cell suspension culture. Addition of superoxide dismutase (480 U·ml^-1) and Tiron (5 μmol·L^-1) to cell culture suspension decreases the level of lanthanide cation-induced ·O2^- generation, suggesting that ·O2^- generation is extra-cellular. Pretreatment of the cell culture suspension with diphenyleneiodonium (10 and 50 μmol·L^-1 ), quinacrine ( 1 and 5 mmol· L^-1 ) and imidazol ( 10 mmol· L^-1 ), inhibitors of NADPH oxidase, notably inhibits the generation of superoxide induced by lanthanide cation, implying the possible involvement of activation of NADPH oxidase. In addition, addition of SHAM (1 and 5 mmol· L^-1), azide (0.2 and 1 mmol· L^-1 ), inhibitor of peroxidase, has no influence on ·O2^- generation.展开更多
Mitochondrial DNA(mtDNA) common deletion(CD) plays a significant role in aging and age-related diseases.In this study,we used D-galactose(D-gal) to generate an animal model of aging and the involvement and causative m...Mitochondrial DNA(mtDNA) common deletion(CD) plays a significant role in aging and age-related diseases.In this study,we used D-galactose(D-gal) to generate an animal model of aging and the involvement and causative mechanisms of mitochondrial damage in such a model were investigated.Twenty 5-week-old male Sprague-Dawley rats were randomly divided into two groups:D-gal group(n=10) and control group(n=10).The quantity of the mtDNA CD in the hippocampus was determined using a TaqMan real-time PCR assay.Transmission electron microscopy was used to observe the mitochondrial ultrastructure in the hippocampus.Western blot was used to detect the protein levels of NADPH oxidase(NOX) and uncoupling protein 2(UCP2).We found that the level of mtDNA CD was significantly higher in the hippocampus of D-gal-induced aging rats than in control rats.In comparison with the control group,the mitochondrial ultrastructure in the hippocampus of D-gal-treated rats was damaged,and the protein levels of NOX and UCP2 were significantly increased in the hippocampus of D-gal-induced aging rats.This study demonstrated that the levels of mtDNA CD and NOX protein expression were significantly increased in the hippocampus of D-gal-induced aging rats.These findings indicate that NOX-dependent reactive oxygen species generation may contribute to D-gal-induced mitochondrial damage.展开更多
The antibody against AT1-EC2 plays a role in some kinds of inflammatory vascular diseases including malignant hypertension,preeclampsia,and renal-allograft rejection,but the detailed mechanisms remain unclear.In order...The antibody against AT1-EC2 plays a role in some kinds of inflammatory vascular diseases including malignant hypertension,preeclampsia,and renal-allograft rejection,but the detailed mechanisms remain unclear.In order to investigate the changes of NADPH oxidase and reactive oxygen species in the aorta in a mouse model which can produce AT1-EC2 antibody by active immunization with AT1-EC2 peptide,15 mice were divided into three groups:control group,AT1-EC2-immunized group,and AT1-EC2-immunized and valsartan-treated group.In AT1-EC2-immunized group and AT1-EC2-immunized and valsartan-treated group,the mice were immunized by 50 μg peptide subcutaneously at multiple points for 4 times:0,5,10,and 15 days after the experiment.In AT1-EC2-immunized and valsartan-treated group,valsartan was given at a dose of 100 mg/kg every day for 20 days.After the experiment,the mice were sacrificed under anesthesia and the aortas were obtained and frozen in liquid nitrogen for the preparation of frozen section slides and other experiments.The titer of AT1-EC2 was assayed by using ELISA.The level of NOX1 mRNA in the aorta was determined by using RT-PCR.The expression of NOX1 was detected by using Western blotting.Confocal scanning microscopy was used to assay the α-actin and NOX1 expression in the aortic tissue.The O 2.production was detected in situ after DHE staining.The mice produced high level antibody against AT1-EC2 in AT1-EC2-immunized group and AT1-EC2-immunized and valsartan-treated group,and the level of NOX1 mRNA in the aortic tissues was 1.6±0.4 times higher and the NOX1 protein expression was higher in AT1-EC2-immunized group than in control group.There were no significant differences in the level of NOX1 mRNA and protein expression between control group and AT1-EC2-immunized and valsartan-treated group.The expression and co-localization of α-actin and NOX1 in AT1-EC2-immunized group increased significantly as compared with those in control group,and the O 2.production increased about 2.7 times as compared with control group.There were no significant differences between control group and AT1-EC2-immunized and valsartan-treated group.It is concluded that active immunization with AT1-EC2 can activate NOX1-ROS,and increase vascular inflammation,which can be inhibited by AT1 receptor blocker valsartan.This may partially explain the mechanism of the pathogenesis of inflammatory vascular diseases related to antibody against AT1-EC2.展开更多
Excess production of reactive oxygen species (ROS) critically contributes to occurrence of reperfusion injury, the paradoxical response of ischemic brain tissue to restoration of cerebral blood flow. However, the en...Excess production of reactive oxygen species (ROS) critically contributes to occurrence of reperfusion injury, the paradoxical response of ischemic brain tissue to restoration of cerebral blood flow. However, the enzymatic sources of ROS generation remain to be unclear. This study examined Nox2-ontaining NADPH oxidase (Nox2) expression and its activity in ischemic brain tissue following post-ischemic reperfusion to clarify the mechanism of enzymatic reaction of ROS. Male Sprague-Dawley rats were subjected to 90-minute middle cerebral artery occlusion, followed by 3 or 22.5 hours of reperfusion. Quantitative reverse transcriptase PCR and western blot assay were performed to measure mRNA and protein expression of Nox2. Lucigenin fluorescence assays were performed to assess Nox activity. Our data showed that Nox2 mRNA and protein expression levels were significantly increased (3.7-fold for mRNA and 3.6-fold for protein) in ischemic brain tissue at 22.5 hours but not at 3 hours following post-ischemic reperfusion. Similar results were obtained for the changes of NADPH oxidase activity in ischemic cerebral tissue at the two reperfusion time points. Our results suggest that Nox2 may not contribute to the early burst of reperfusion-related ROS generation, but is rather an important source of ROS generation during prolonged reperfusion.展开更多
Objective The roles of cerebrovascular oxidative stress in vascular functional remodeling have been described in hindlimb-unweighting (HU) rats. However, the underlying mechanism remains to be established. Methods W...Objective The roles of cerebrovascular oxidative stress in vascular functional remodeling have been described in hindlimb-unweighting (HU) rats. However, the underlying mechanism remains to be established. Methods We investigated the generation of vascular reactive oxygen species (ROS), Nox2/Nox4 protein and mRNA levels, NADPH oxidase activity, and manganese superoxide dismutase (MnSOD) and glutathione peroxidase-1 (GPx-1) mRNA levels in cerebral and mesenteric smooth muscle cells (VSMCs) of HU rats. Results ROS production increased in cerebral but not in mesenteric VSMCs of HU rats compared with those in control rats. Nox2 and Nox4 protein and mRNA levels were increased significantly but MnSOD/GPx-1 mRNA levels decreased in HU rat cerebral arteries but not in mesenteric arteries. NADPH oxidases were activated significantly more in cerebral but not in mesenteric arteries of HU rats. NADPH oxidase inhibition with apocynin attenuated cerebrovascular ROS production and partially restored Nox2/Nox4 protein and mRNA levels, NADPH oxidase activity, and MnSOD/GPx-1 mRNA levels in cerebral VSMCs of HU rats. Conclusion These results suggest that vascular NADPH oxidases regulate cerebrovascular redox status and participate in vascular oxidative stress injury during simulated microgravity.展开更多
OBJECTIVE The Ca2+-activated Cl-channel(Ca CC)plays a crucial role in various physiological functions.Recent evidences suggest TMEM16A encodes CaC C in various cells,including endothelial cells.However,the role of TME...OBJECTIVE The Ca2+-activated Cl-channel(Ca CC)plays a crucial role in various physiological functions.Recent evidences suggest TMEM16A encodes CaC C in various cells,including endothelial cells.However,the role of TMEM16A in the vascular endothelial dysfunction in hypertension is unclear.METHODS In the study,RT-PCR,Western blotting,co-immunopricipitation,confocal imaging,patch-clamp,and endothelial-specific TMEM16A transgenic and knockout mice were employed.RESULTS We found that TMEM16A was expressed abundantly and functioned as Ca CC in endothelial cells.AngiotensinⅡ(AngⅡ)induced endothelial dysfunction with an increase in TMEM16A expression,which was alleviated by TMEM16A inhibitor.Further studies revealed that TMEM16A endothelial-specific knockout significantly lowered the blood pressure and ameliorated endothelial dysfunction in AngⅡ-induced hypertension,whereas,TMEM16A endothelial-specific overexpression showed the opposite effects.These results were related to the increased reactive oxygen species(ROS)generation,NADPH oxidase activation,and Nox2,p22phox expression facilitated by TMEM16A upon AngⅡ-induced hypertensive challenges.Moreover,TMEM16A directly interacted with Nox2 monomer and reduced the degradation of Nox2 through the proteasome-dependent endoplasmic recticulum-associated degradation pathway.TMEM16A also potentiated the translocation of p47phox and p67phox from cytosol to cell membrane and the subsequent interaction with Nox2.CONCLUSION Our results demonstrated that TMEM16A,as Ca CC,is a positive regulator of ROS generation via upregulating the activation of Nox2 NADPH oxidase in the vascular endothelium,and therefore facilitates endothelial dysfunction and hypertension.Modification of TMEM16A may be a novel therapeutic strategy for endothelial dysfunction-associated cardiovascular diseases.展开更多
Endothelial dysfunction is implicated in a variety of cardiovascular diseases although the detailed mechanisms are not yet completely understood. A relationship has been suggested to exist between inflammation and end...Endothelial dysfunction is implicated in a variety of cardiovascular diseases although the detailed mechanisms are not yet completely understood. A relationship has been suggested to exist between inflammation and endothelial dysfunction. TNF-α serves as one of the most important pro-inflammatory cytokines. The main objectives of the present study were to explore the effect of PKC-ζ on TNF-α-impaired endothelial function as well as the underlying mechanisms. Acetylcho-line-induced endothelium-dependent vasodilation of mouse thoracic aorta stimulated by TNF-α was initially determined. PKC-ζ deficient mice and the specific inhibitor of NADPH oxidase were respectively applied to elucidate their roles in TNF-α-induced endothelial dysfunction. In vitro superoxide generation in HAECs was detected by DHE staining after administration of TNF-α. Meanwhile, the regulatory p47phox subunit of NADPH oxidase was evaluated by Western blotting and RT-PCR. The results showed that TNF-α conspicuously impaired endothelium-dependent vasodilation and the impairment was attenuated by either depleting PKC-ζ or inhibiting NADPH oxidase. In vitro TNF-α increased superoxide production and p47phox expression in HAECs, and such increases could be ameliorated by the specific PKC-ζ inhibitor. Our findings suggest that superoxide over-production triggered by PKC-ζ-dependent NADPH oxidase activation contributes to TNF-α-induced endothelial dysfunction.展开更多
Neuroinflammation,mediated by the nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing-3(NLRP3)inflammasome,is a significant contributor to the pathogenesis of neurodegenerative disea...Neuroinflammation,mediated by the nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing-3(NLRP3)inflammasome,is a significant contributor to the pathogenesis of neurodegenerative diseases(NDDs).Reynos-in,a natural sesquiterpene lactone(SL),exhibits a broad spectrum of pharmacological effects,suggesting its potential therapeutic value.However,the effects and mechanism of reynosin on neuroinflammation remain elusive.The current study explores the effects and mechanisms of reynosin on neuroinflammation using mice and BV-2 microglial cells treated with lipopolysaccharide(LPS).Our findings reveal that reynosin effectively reduces microglial inflammation in vitro,as demonstrated by decreased CD11b expression and lowered interleukin-1 beta(IL-1β)and interleukin-18(IL-18)mRNA and protein levels.Correspondingly,in vivo,results showed a re-duction in the number of Iba-1 positive cells and alleviation of morphological alterations,alongside decreased expressions of IL-1βand IL-18.Further analysis indicates that reynosin inhibits NLRP3 inflammasome activation,evidenced by reduced transcription of NLRP3 and caspase-1,diminished NLRP3 protein expression,inhibited apoptosis-associated speck-like protein containing a CARD(ASC)oli-gomerization,and decreased caspase-1 self-cleavage.Additionally,reynosin curtailed the activation of nicotinamide adenine dinuc-leotide phosphate(NADPH)oxidase,demonstrated by reduced NADP^(+)and NADPH levels,downregulation of gp91^(phox) mRNA,pro-tein expression,suppression of p47^(phox) expression and translocation to the membrane.Moreover,reynosin exhibited a neuroprotective effect against microglial inflammation in vivo and in vitro.These collective findings underscore reynosin’s capacity to mitigate mi-croglial inflammation by inhibiting the NLRP3 inflammasome,thus highlighting its potential as a therapeutic agent for managing neuroinflammation.展开更多
Neuroinflammation mediated by microglia and oxidative stress play pivotal roles in the development of chronic temporal lobe epilepsy(TLE).We postulated that kainic acid(KA)-Induced status epilepticus triggers microgli...Neuroinflammation mediated by microglia and oxidative stress play pivotal roles in the development of chronic temporal lobe epilepsy(TLE).We postulated that kainic acid(KA)-Induced status epilepticus triggers microglia-dependent inflammation,leading to neuronal damage,a lowered seizure threshold,and the emergence of spontaneous recurrent seizures(SRS).Extensive evidence from our laboratory suggests that dextromethorphan(DM),even in ultra-low doses,has anti-inflammatory and neuroprotective effects in many animal models of neurodegenerative disease.Our results showed that administration of DM(10 ng/kg per day;subcutaneously via osmotic minipump for 4 weeks)significantly mitigated the residual effects of KA,including the frequency of SRS and seizure susceptibility.In addition,DM-treated rats showed improved cognitive function and reduced hippocampal neuronal loss.We found suppressed microglial activation-mediated neuroinflammation and decreased expression of hippocampal gp91^(phox) and p47^(phox) proteins in KA-induced chronic TLE rats.Notably,even after discontinuation of DM treatment,ultra-low doses of DM continued to confer long-term anti-seizure and neuroprotective effects,which were attributed to the inhibition of microglial NADPH oxidase 2 as revealed by mechanistic studies.展开更多
Stimulus-specific accumulation of second messengers like reactive oxygen species (ROS) and Ca^+ are central to many signaling and regulation processes in plants. However, mechanisms that govern the reciprocal inter...Stimulus-specific accumulation of second messengers like reactive oxygen species (ROS) and Ca^+ are central to many signaling and regulation processes in plants. However, mechanisms that govern the reciprocal interrelation of Ca^+ and ROS signaling are only beginning to emerge. NADPH oxidases of the respiratory burst oxidase homolog (RBOH) family are critical components contributing to the generation of ROS while Calcineurin B-like (CBL) Ca^+ sensor proteins together with their interacting kinases (CIPKs) have been shown to function in many Ca^+- signaling processes. In this study, we identify direct functional interactions between both signaling systems. We report that the CBL-interacting pro- tein kinase ClPK26 specifically interacts with the N-terminal domain of RBOHF in yeast two-hybrid analyses and with the full-length RBOHF protein in plant cells. In addition, CIPK26 phosphorylates RBOHF in vitro and co-expression of either CBL1 or CBL9 with CIPK26 strongly enhances ROS production by RBOHF in HEK293T cells. Together, these findings identify a direct interconnection between CBL-ClPK-mediated Ca^+ signaling and ROS signaling in plants and provide evidence for a synergistic activation of the NADPH oxidase RBOHF by direct Ca^+-binding to its EF-hands and Ca2+-induced phospho-rylation by CBL1/9-ClPK26 complexes.展开更多
Reactive oxygen species(ROS)are pervasive signaling molecules in biological systems.In humans,a lack of ROS causes chronic and extreme bacterial infections,while uncontrolled release of these factors causes pathologie...Reactive oxygen species(ROS)are pervasive signaling molecules in biological systems.In humans,a lack of ROS causes chronic and extreme bacterial infections,while uncontrolled release of these factors causes pathologies due to excessive inflammation.Professional phagocytes such as neutrophils(PMNs),eosinophils,monocytes,and macrophages use superoxide-generating NADPH oxidase(NOX)as part of their arsenal of antimicrobial mechanisms to produce high levels of ROS.NOX is a multisubunit enzyme complex composed of five essential subunits,two of which are localized in the membrane,while three are localized in the cytosol.In resting phagocytes,the oxidase complex is unassembled and inactive;however,it becomes activated after cytosolic components translocate to the membrane and are assembled into a functional oxidase.The NOX isoforms play a variety of roles in cellular differentiation,development,proliferation,apoptosis,cytoskeletal control,migration,and contraction.Recent studies have identified NOX as a major contributor to disease pathologies,resulting in a shift in focus on inhibiting the formation of potentially harmful free radicals.Therefore,a better understanding of the molecular mechanisms and the transduction pathways involved in NOX-mediated signaling is essential for the development of new therapeutic agents that minimize the hyperproduction of ROS.The current review provides a thorough overview of the various NOX enzymes and their roles in disease pathophysiology,highlights pharmacological strategies,and discusses the importance of computational modeling for future NOX-related studies.展开更多
Objective: To investigate the role of nicatinamide-adenine dinucleotide phosphate (NADPH) oxidase- dependent formation of reactive oxygen species (ROS) in the transforming growth factor β1 (TGF-β 1)-induced e...Objective: To investigate the role of nicatinamide-adenine dinucleotide phosphate (NADPH) oxidase- dependent formation of reactive oxygen species (ROS) in the transforming growth factor β1 (TGF-β 1)-induced epithelial-mesenchymal transition (EMT) in rat peritoneal mesothelial ceils (RPMCs), and the effect of Astragalus injection (AGI) intervention. Methods: Primary RPMCs were cultured to the second generation in vitro. After synchronization for 24 h, the calls were randomly assigned to the following groups: control (Group A), AGI (2 g/mL; Group B), TGF- β1 (10 ng/mL; Group C), TGF- β1 (10 ng/mL) + AGI (2 g/mL; Group D; pretreated for 1 h with AGI before TGF-β 1 stimulation). Reverse transcription-polymerase chain reaction (RT-PCR) and Westem blot analysis were employed to evaluate the mRNA and protein expression of the NADPH oxidase subunit p67phox, e-smooth muscle actin (α -SMA) and E-cadherin. The dichlorofluorescain-sensitive cellular ROS levels were measured by a fluorometric assay and confocal microscopy. Results: TGF- β1 significantly induced NADPH oxidase subunit p67phox mRNA and protein expression in RPMCs, as well as inducing the production of intracellular ROS. AGI inhibited this TGF- β1-induced up-regulation by 39.3% and 47.8%, respectively (P〈0.05), as well as inhibiting the TGF- β 1- induced ROS generation by 56.3% (P〈0.05). TGF- β 1 also induced α-SMA mRNA and protein expression, and down-regulated E-cadhedn mRNA and protein expression (P〈0.05). This effect was suppressed by AGI (P〈0.05). Conclusions: NADPH oxidase-dependent formation of ROS may mediate the TGF- β1-dependent EMT in RPMCs. AGI could inhib/t this process, providing a theoretical basis for AGI in the prevention of peritoneal fibrosis.展开更多
Background Thrombin is a multifunctional serine protease that plays a crucial role in hemostasis following tissue injury.In addition to its procoagulation effect, thrombin is also a potent mesenchymal cell mitogen, th...Background Thrombin is a multifunctional serine protease that plays a crucial role in hemostasis following tissue injury.In addition to its procoagulation effect, thrombin is also a potent mesenchymal cell mitogen, therefore it plays important roles in the local proliferation of mesenchymal cells in the tissue repair process. Reactive oxygen species (ROS) can induce some human cells to proliferate at lower rates while at higher concentrations they promote cells to undergo apoptosis or necrosis. Accumulative evidence suggests that thrombin can induce some cells to produce ROS. Based on these observations, we provide a hypothesis that thrombin can stimulate human lung fibroblasts to produce ROS, which play an important role in human lung fibroblast proliferation.Methods ROS were detected in fibroblasts at 30 minutes and 60 minutes following thrombin (20 U/ml) exposure using flow cytometry. The ratio of reduced glutathione/oxidized glutathione (GSH/GSSG) was assayed in lung fibroblasts using a commercial kit following treatment with thrombin at different concentrations. NADPH oxidase and the extracellular regulated kinase1/2 (ERK1/2) signaling pathway were detected by Western blotting after thrombin stimulation to lung fibroblasts.Results Thrombin, at 20 U/ml, stimulated human lung fibroblasts (HLF) to generate ROS in a time dependent manner.The ratio of GSH/GSSG in fibroblasts treated with thrombin showed a significant decrease. NADPH oxidase was activated and the ERK1/2 signal pathway was involved in the proliferation process of fibroblasts treated with thrombin.Conclusion The activation of NADPH oxidase by thrombin leads to the production of ROS, which promotes fibroblasts proliferation via activation of the ERK1/2 signaling pathway.展开更多
Production of reactive oxygen species(ROS)is a conserved immune response primarily mediated by NADPH oxidases(NOXs),also known in plants as respiratory burst oxidase homologs(RBOHs).Most microbe-associated molecular p...Production of reactive oxygen species(ROS)is a conserved immune response primarily mediated by NADPH oxidases(NOXs),also known in plants as respiratory burst oxidase homologs(RBOHs).Most microbe-associated molecular patterns(MAMPs)trigger a very fast and transient ROS burst in plants.However,recently,we found that lipopolysaccharides(LPS),a typical bacterial MAMP,triggered a biphasic ROS burst.In this study,we isolated mutants defective in LPS-triggered biphasic ROS burst(delt)in Arabidopsis,and cloned the DELT1 gene that was shown to encode RBOHD.In the delt1-2 allele,the antepenultimate residue,glutamic acid(E919),at the C-terminus of RBOHD was mutated to lysine(K).E919 is a highly conserved residue in NADPH oxidases,and a mutation of the corresponding residue E568 in human NOX2 has been reported to be one of the causes of chronic granulomatous disease.Consistently,we found that residue E919 was indispensable for RBOHD function in the MAMP-induced ROS burst and stomatal closure.It has been suggested that the mutation of this residue in other NADPH oxidases impairs the protein’s stability and complex assembly.However,we found that the E919K mutation did not affect RBOHD protein abundance or the ability of protein association,suggesting that the residue E919 in RBOHD might have a regulatory mechanism different from that of other NOXs.Taken together,our results confirm that the antepenultimate residue E is critical for NADPH oxidases and provide a new insight into the regulatory mechanisms of RBOHD.展开更多
Recently, mounting evidence implicating reactive oxygen species (ROS) generated by NADPH oxidase (NOX) enzymes in the pathogenesis of several nenrodegenerative diseases including Amyotrophic lateral sclerosis (AL...Recently, mounting evidence implicating reactive oxygen species (ROS) generated by NADPH oxidase (NOX) enzymes in the pathogenesis of several nenrodegenerative diseases including Amyotrophic lateral sclerosis (ALS), Alzheimer's (AD), Parkinson's (PD) and polyglntamine disease, have arisen. NOX enzymes are transmembrane proteins and generate reactive oxygen species by transporting electrons across lipid membranes. Under normal healthy conditions, low levels of ROS produced by NOX enzymes have been shown to play a role in neuronal differentiation and synaptic plasticity. However, in chronic nenrodegenerative diseases over-activation of NOX in neurons, as well as in astrocytes and microglia, has been linked to pathogenic processes such as oxidative stress, exitotoxicity and neuroinflammation. In this review, we summarize the current knowledge about NOX functions in the healthy central nervous system and especially the role of NOX enzymes in neurodegenerative disease processes.展开更多
Transcription of human immunodeficiency virus (HIV-1) is activated by viral Tat protein which regulates HIV-long terminal reapaet (LTR) transcription and elongation.
基金supported by the National Research Foundation of the Republic of Korea 2018R1D1A3B07047960the Soonchunhyang University Research Fund(to SSY).
文摘Diseases like Alzheimer’s and Parkinson’s diseases are defined by inflammation and the damage neurons undergo due to oxidative stress. A primary reactive oxygen species contributor in the central nervous system, NADPH oxidase 4, is viewed as a potential therapeutic touchstone and indicative marker for these ailments. This in-depth review brings to light distinct features of NADPH oxidase 4, responsible for generating superoxide and hydrogen peroxide, emphasizing its pivotal role in activating glial cells, inciting inflammation, and disturbing neuronal functions. Significantly, malfunctioning astrocytes, forming the majority in the central nervous system, play a part in advancing neurodegenerative diseases, due to their reactive oxygen species and inflammatory factor secretion. Our study reveals that aiming at NADPH oxidase 4 within astrocytes could be a viable treatment pathway to reduce oxidative damage and halt neurodegenerative processes. Adjusting NADPH oxidase 4 activity might influence the neuroinflammatory cytokine levels, including myeloperoxidase and osteopontin, offering better prospects for conditions like Alzheimer’s disease and Parkinson’s disease. This review sheds light on the role of NADPH oxidase 4 in neural degeneration, emphasizing its drug target potential, and paving the path for novel treatment approaches to combat these severe conditions.
文摘Endogenous elicitor, termed cellulase-degraded cell wall (CDW), was prepared from the cell wall of suspension-cultured ginseng (Panax ginseng C.A. Meyer) cells via cellulase degradation. CDW activated the NADPH oxidase activity of isolated plasma membranes and stimulated in vivo H2O2 generation in ginseng cell suspensions. CDW also increased the activity of phenylalanine ammonia lyase (PAL), expression of a P. ginseng squalene epoxidase (sqe) gene and saponin synthesis. NADPH oxidase inhibitors inhibited both in vitro NADPH oxidase activity and in vivo H2O2 generation. Induction of PAL activity, saponin synthesis and sqe gene expression were all inhibited by such inhibitor treatments and reduced by incubation with catalase and HA scavengers. These data indicate that activation of NADPH oxidase and generation of H2O2 are essential signalling events mediating defence responses induced by the endogenous elicitor(s) present in CDW.
基金supported by the National Natural Science Foundation of China,No.81671125the Natural Science Foundation of Guangdong Province,No.2021A1515011115Guangzhou Science and Technology Project,No.202102010346(all to YZC)。
文摘Intracerebral hemorrhage is often accompanied by oxidative stress induced by reactive oxygen species,which causes abnormal mitochondrial function and secondary reactive oxygen species generation.This creates a vicious cycle leading to reactive oxygen species accumulation,resulting in progression of the pathological process.Therefore,breaking the cycle to inhibit reactive oxygen species accumulation is critical for reducing neuronal death after intracerebral hemorrhage.Our previous study found that increased expression of nicotinamide adenine dinucleotide phosphate oxidase 4(NADPH oxidase 4,NOX4)led to neuronal apoptosis and damage to the blood-brain barrier after intracerebral hemorrhage.The purpose of this study was to investigate the role of NOX4 in the circle involving the neuronal tolerance to oxidative stress,mitochondrial reactive oxygen species and modes of neuronal death other than apoptosis after intracerebral hemorrhage.We found that NOX4 knockdown by adeno-associated virus(AAV-NOX4)in rats enhanced neuronal tolerance to oxidative stress,enabling them to better resist the oxidative stress caused by intracerebral hemorrhage.Knockdown of NOX4 also reduced the production of reactive oxygen species in the mitochondria,relieved mitochondrial damage,prevented secondary reactive oxygen species accumulation,reduced neuronal pyroptosis and contributed to relieving secondary brain injury after intracerebral hemorrhage in rats.Finally,we used a mitochondria-targeted superoxide dismutase mimetic to explore the relationship between reactive oxygen species and NOX4.The mitochondria-targeted superoxide dismutase mimetic inhibited the expression of NOX4 and neuronal pyroptosis,which is similar to the effect of AAV-NOX4.This indicates that NOX4 is likely to be an important target for inhibiting mitochondrial reactive oxygen species production,and NOX4 inhibitors can be used to alleviate oxidative stress response induced by intracerebral hemorrhage.
基金supported by the Research Fund of Ege University(Project No.2010-TIP-076)
文摘Increased reactive oxygen species by the activation of NADPH oxidase(NOX) contributes to the development of diabetic complications.Apocynin,a NOX inhibitor,increases sciatic nerve conductance and blood flow in diabetic rats.We investigated potential protective effect of apocynin in rat diabetic neuropathy and its precise mechanism of action at molecular level.Rat models of streptozotocin-induced diabetes were treated with apocynin(30 and 100 mg/kg per day,intragastrically) for 4 weeks.Mechanical hyperalgesia and allodynia were determined weekly using analgesimeter and dynamic plantar aesthesiometer.Western blot analysis and histochemistry/immunohistochemistry were performed in the lumbar spinal cord and sciatic nerve respectively.Streptozotocin injection reduced pain threshold in analgesimeter,but not in aesthesiometer.Apocynin treatment increased pain threshold dose-dependently.Western blot analysis showed an increase in catalase and NOX-p47 phox protein expression in the spinal cord.However,protein expressions of neuronal and inducible nitric oxide synthase(n NOS,i NOS),superoxide dismutase,glutathion peroxidase,nitrotyrosine,tumor necrosis factor-α,interleukin-6,interleukin-1β,aldose reductase,cyclooxygenase-2 or MAC-1(marker for increased microgliosis) in the spinal cord remained unchanged.Western blot analysis results also demonstrated that apocynin decreased NOX-p47 phox expression at both doses and catalase expression at 100 mg/kg per day.Histochemistry of diabetic sciatic nerve revealed marked degeneration.n NOS and i NOS immunoreactivities were increased,while S-100 immunoreactivity(Schwann cell marker) was decreased in sciatic nerve.Apocynin treatment reversed these changes dose-dependently.In conclusion,decreased pain threshold of diabetic rats was accompanied by increased NOX and catalase expression in the spinal cord and increased degeneration in the sciatic nerve characterized by increased NOS expression and Schwann cell loss.Apocynin treatment attenuates neuropathic pain by decelerating the increased oxidative stress-mediated pathogenesis in diabetic rats.
文摘A rapid and concentration-dependent generation of superoxide anion (·O2^-), measured with a superoxide-specific Cypridina luciferin-derived chemiluminescent reagent, was observed when two lanthanide salts (LaCl3 and CdCl3 ) were added to tobacco ( Nicotiana tabacum) cell suspension culture. Addition of superoxide dismutase (480 U·ml^-1) and Tiron (5 μmol·L^-1) to cell culture suspension decreases the level of lanthanide cation-induced ·O2^- generation, suggesting that ·O2^- generation is extra-cellular. Pretreatment of the cell culture suspension with diphenyleneiodonium (10 and 50 μmol·L^-1 ), quinacrine ( 1 and 5 mmol· L^-1 ) and imidazol ( 10 mmol· L^-1 ), inhibitors of NADPH oxidase, notably inhibits the generation of superoxide induced by lanthanide cation, implying the possible involvement of activation of NADPH oxidase. In addition, addition of SHAM (1 and 5 mmol· L^-1), azide (0.2 and 1 mmol· L^-1 ), inhibitor of peroxidase, has no influence on ·O2^- generation.
基金supported by grants from the Natural Science Foundation of Hubei province (No. 2010CDB08005)the National Natural Science Foundation of China (No. 30730094 and81000409)Special Funds for State Key Development Program for Basic Research of China (973 Program) (No.2011CB504504)
文摘Mitochondrial DNA(mtDNA) common deletion(CD) plays a significant role in aging and age-related diseases.In this study,we used D-galactose(D-gal) to generate an animal model of aging and the involvement and causative mechanisms of mitochondrial damage in such a model were investigated.Twenty 5-week-old male Sprague-Dawley rats were randomly divided into two groups:D-gal group(n=10) and control group(n=10).The quantity of the mtDNA CD in the hippocampus was determined using a TaqMan real-time PCR assay.Transmission electron microscopy was used to observe the mitochondrial ultrastructure in the hippocampus.Western blot was used to detect the protein levels of NADPH oxidase(NOX) and uncoupling protein 2(UCP2).We found that the level of mtDNA CD was significantly higher in the hippocampus of D-gal-induced aging rats than in control rats.In comparison with the control group,the mitochondrial ultrastructure in the hippocampus of D-gal-treated rats was damaged,and the protein levels of NOX and UCP2 were significantly increased in the hippocampus of D-gal-induced aging rats.This study demonstrated that the levels of mtDNA CD and NOX protein expression were significantly increased in the hippocampus of D-gal-induced aging rats.These findings indicate that NOX-dependent reactive oxygen species generation may contribute to D-gal-induced mitochondrial damage.
基金supported by National Natural Science Foundation of China (No. 30871069)
文摘The antibody against AT1-EC2 plays a role in some kinds of inflammatory vascular diseases including malignant hypertension,preeclampsia,and renal-allograft rejection,but the detailed mechanisms remain unclear.In order to investigate the changes of NADPH oxidase and reactive oxygen species in the aorta in a mouse model which can produce AT1-EC2 antibody by active immunization with AT1-EC2 peptide,15 mice were divided into three groups:control group,AT1-EC2-immunized group,and AT1-EC2-immunized and valsartan-treated group.In AT1-EC2-immunized group and AT1-EC2-immunized and valsartan-treated group,the mice were immunized by 50 μg peptide subcutaneously at multiple points for 4 times:0,5,10,and 15 days after the experiment.In AT1-EC2-immunized and valsartan-treated group,valsartan was given at a dose of 100 mg/kg every day for 20 days.After the experiment,the mice were sacrificed under anesthesia and the aortas were obtained and frozen in liquid nitrogen for the preparation of frozen section slides and other experiments.The titer of AT1-EC2 was assayed by using ELISA.The level of NOX1 mRNA in the aorta was determined by using RT-PCR.The expression of NOX1 was detected by using Western blotting.Confocal scanning microscopy was used to assay the α-actin and NOX1 expression in the aortic tissue.The O 2.production was detected in situ after DHE staining.The mice produced high level antibody against AT1-EC2 in AT1-EC2-immunized group and AT1-EC2-immunized and valsartan-treated group,and the level of NOX1 mRNA in the aortic tissues was 1.6±0.4 times higher and the NOX1 protein expression was higher in AT1-EC2-immunized group than in control group.There were no significant differences in the level of NOX1 mRNA and protein expression between control group and AT1-EC2-immunized and valsartan-treated group.The expression and co-localization of α-actin and NOX1 in AT1-EC2-immunized group increased significantly as compared with those in control group,and the O 2.production increased about 2.7 times as compared with control group.There were no significant differences between control group and AT1-EC2-immunized and valsartan-treated group.It is concluded that active immunization with AT1-EC2 can activate NOX1-ROS,and increase vascular inflammation,which can be inhibited by AT1 receptor blocker valsartan.This may partially explain the mechanism of the pathogenesis of inflammatory vascular diseases related to antibody against AT1-EC2.
基金financially supported by grants from Shenzhen Science and Technology Innovation Commission of China,No.JCYJ20150330102401097,KQCX20140521101427034,JCYJ20140414170821291China Postdoctoral Science Foundation,No.2015M572388
文摘Excess production of reactive oxygen species (ROS) critically contributes to occurrence of reperfusion injury, the paradoxical response of ischemic brain tissue to restoration of cerebral blood flow. However, the enzymatic sources of ROS generation remain to be unclear. This study examined Nox2-ontaining NADPH oxidase (Nox2) expression and its activity in ischemic brain tissue following post-ischemic reperfusion to clarify the mechanism of enzymatic reaction of ROS. Male Sprague-Dawley rats were subjected to 90-minute middle cerebral artery occlusion, followed by 3 or 22.5 hours of reperfusion. Quantitative reverse transcriptase PCR and western blot assay were performed to measure mRNA and protein expression of Nox2. Lucigenin fluorescence assays were performed to assess Nox activity. Our data showed that Nox2 mRNA and protein expression levels were significantly increased (3.7-fold for mRNA and 3.6-fold for protein) in ischemic brain tissue at 22.5 hours but not at 3 hours following post-ischemic reperfusion. Similar results were obtained for the changes of NADPH oxidase activity in ischemic cerebral tissue at the two reperfusion time points. Our results suggest that Nox2 may not contribute to the early burst of reperfusion-related ROS generation, but is rather an important source of ROS generation during prolonged reperfusion.
基金supported by the National Natural Science Foundation of China(Grant Nos.81101468&81571841)the Beijing NOVO Program(Grant No.XX2013105)
文摘Objective The roles of cerebrovascular oxidative stress in vascular functional remodeling have been described in hindlimb-unweighting (HU) rats. However, the underlying mechanism remains to be established. Methods We investigated the generation of vascular reactive oxygen species (ROS), Nox2/Nox4 protein and mRNA levels, NADPH oxidase activity, and manganese superoxide dismutase (MnSOD) and glutathione peroxidase-1 (GPx-1) mRNA levels in cerebral and mesenteric smooth muscle cells (VSMCs) of HU rats. Results ROS production increased in cerebral but not in mesenteric VSMCs of HU rats compared with those in control rats. Nox2 and Nox4 protein and mRNA levels were increased significantly but MnSOD/GPx-1 mRNA levels decreased in HU rat cerebral arteries but not in mesenteric arteries. NADPH oxidases were activated significantly more in cerebral but not in mesenteric arteries of HU rats. NADPH oxidase inhibition with apocynin attenuated cerebrovascular ROS production and partially restored Nox2/Nox4 protein and mRNA levels, NADPH oxidase activity, and MnSOD/GPx-1 mRNA levels in cerebral VSMCs of HU rats. Conclusion These results suggest that vascular NADPH oxidases regulate cerebrovascular redox status and participate in vascular oxidative stress injury during simulated microgravity.
基金The project supported by National Natural Science Foundation of China(81230082,81302771,81525025,81573422,81500226)Natural Science Foundation of Guangdong Province(2014A030313087)by Science and Technology program of Guangzhou City(201607010255)
文摘OBJECTIVE The Ca2+-activated Cl-channel(Ca CC)plays a crucial role in various physiological functions.Recent evidences suggest TMEM16A encodes CaC C in various cells,including endothelial cells.However,the role of TMEM16A in the vascular endothelial dysfunction in hypertension is unclear.METHODS In the study,RT-PCR,Western blotting,co-immunopricipitation,confocal imaging,patch-clamp,and endothelial-specific TMEM16A transgenic and knockout mice were employed.RESULTS We found that TMEM16A was expressed abundantly and functioned as Ca CC in endothelial cells.AngiotensinⅡ(AngⅡ)induced endothelial dysfunction with an increase in TMEM16A expression,which was alleviated by TMEM16A inhibitor.Further studies revealed that TMEM16A endothelial-specific knockout significantly lowered the blood pressure and ameliorated endothelial dysfunction in AngⅡ-induced hypertension,whereas,TMEM16A endothelial-specific overexpression showed the opposite effects.These results were related to the increased reactive oxygen species(ROS)generation,NADPH oxidase activation,and Nox2,p22phox expression facilitated by TMEM16A upon AngⅡ-induced hypertensive challenges.Moreover,TMEM16A directly interacted with Nox2 monomer and reduced the degradation of Nox2 through the proteasome-dependent endoplasmic recticulum-associated degradation pathway.TMEM16A also potentiated the translocation of p47phox and p67phox from cytosol to cell membrane and the subsequent interaction with Nox2.CONCLUSION Our results demonstrated that TMEM16A,as Ca CC,is a positive regulator of ROS generation via upregulating the activation of Nox2 NADPH oxidase in the vascular endothelium,and therefore facilitates endothelial dysfunction and hypertension.Modification of TMEM16A may be a novel therapeutic strategy for endothelial dysfunction-associated cardiovascular diseases.
文摘Endothelial dysfunction is implicated in a variety of cardiovascular diseases although the detailed mechanisms are not yet completely understood. A relationship has been suggested to exist between inflammation and endothelial dysfunction. TNF-α serves as one of the most important pro-inflammatory cytokines. The main objectives of the present study were to explore the effect of PKC-ζ on TNF-α-impaired endothelial function as well as the underlying mechanisms. Acetylcho-line-induced endothelium-dependent vasodilation of mouse thoracic aorta stimulated by TNF-α was initially determined. PKC-ζ deficient mice and the specific inhibitor of NADPH oxidase were respectively applied to elucidate their roles in TNF-α-induced endothelial dysfunction. In vitro superoxide generation in HAECs was detected by DHE staining after administration of TNF-α. Meanwhile, the regulatory p47phox subunit of NADPH oxidase was evaluated by Western blotting and RT-PCR. The results showed that TNF-α conspicuously impaired endothelium-dependent vasodilation and the impairment was attenuated by either depleting PKC-ζ or inhibiting NADPH oxidase. In vitro TNF-α increased superoxide production and p47phox expression in HAECs, and such increases could be ameliorated by the specific PKC-ζ inhibitor. Our findings suggest that superoxide over-production triggered by PKC-ζ-dependent NADPH oxidase activation contributes to TNF-α-induced endothelial dysfunction.
基金supported by the National Natural Science Foundation of China(No.82174076)the Construction Project of Liaoning Provincial Key Laboratory,China(No.2022JH13/10200026)+2 种基金the Fundamental Research Funds for the Central Universities(No.N2220002),the 111 Project(No.B16009)Scientific Research Fund of Liaoning Province Education Department(No.LJKZ0945)Natural Science Foundation of Liaoning Province(No.2022-MS-242).
文摘Neuroinflammation,mediated by the nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing-3(NLRP3)inflammasome,is a significant contributor to the pathogenesis of neurodegenerative diseases(NDDs).Reynos-in,a natural sesquiterpene lactone(SL),exhibits a broad spectrum of pharmacological effects,suggesting its potential therapeutic value.However,the effects and mechanism of reynosin on neuroinflammation remain elusive.The current study explores the effects and mechanisms of reynosin on neuroinflammation using mice and BV-2 microglial cells treated with lipopolysaccharide(LPS).Our findings reveal that reynosin effectively reduces microglial inflammation in vitro,as demonstrated by decreased CD11b expression and lowered interleukin-1 beta(IL-1β)and interleukin-18(IL-18)mRNA and protein levels.Correspondingly,in vivo,results showed a re-duction in the number of Iba-1 positive cells and alleviation of morphological alterations,alongside decreased expressions of IL-1βand IL-18.Further analysis indicates that reynosin inhibits NLRP3 inflammasome activation,evidenced by reduced transcription of NLRP3 and caspase-1,diminished NLRP3 protein expression,inhibited apoptosis-associated speck-like protein containing a CARD(ASC)oli-gomerization,and decreased caspase-1 self-cleavage.Additionally,reynosin curtailed the activation of nicotinamide adenine dinuc-leotide phosphate(NADPH)oxidase,demonstrated by reduced NADP^(+)and NADPH levels,downregulation of gp91^(phox) mRNA,pro-tein expression,suppression of p47^(phox) expression and translocation to the membrane.Moreover,reynosin exhibited a neuroprotective effect against microglial inflammation in vivo and in vitro.These collective findings underscore reynosin’s capacity to mitigate mi-croglial inflammation by inhibiting the NLRP3 inflammasome,thus highlighting its potential as a therapeutic agent for managing neuroinflammation.
基金supported by the National Major Scientific and Technological Special Project for Significant New Drugs Development(2019zx09301102)the Project of Liaoning Provincial Department of Education(LJKZ0826)the Open Project of National and Local Joint Engineering Research Center for Drug Research and Development of Neurodegenerative Diseases(2022GCYJZX-YB02).
文摘Neuroinflammation mediated by microglia and oxidative stress play pivotal roles in the development of chronic temporal lobe epilepsy(TLE).We postulated that kainic acid(KA)-Induced status epilepticus triggers microglia-dependent inflammation,leading to neuronal damage,a lowered seizure threshold,and the emergence of spontaneous recurrent seizures(SRS).Extensive evidence from our laboratory suggests that dextromethorphan(DM),even in ultra-low doses,has anti-inflammatory and neuroprotective effects in many animal models of neurodegenerative disease.Our results showed that administration of DM(10 ng/kg per day;subcutaneously via osmotic minipump for 4 weeks)significantly mitigated the residual effects of KA,including the frequency of SRS and seizure susceptibility.In addition,DM-treated rats showed improved cognitive function and reduced hippocampal neuronal loss.We found suppressed microglial activation-mediated neuroinflammation and decreased expression of hippocampal gp91^(phox) and p47^(phox) proteins in KA-induced chronic TLE rats.Notably,even after discontinuation of DM treatment,ultra-low doses of DM continued to confer long-term anti-seizure and neuroprotective effects,which were attributed to the inhibition of microglial NADPH oxidase 2 as revealed by mechanistic studies.
文摘Stimulus-specific accumulation of second messengers like reactive oxygen species (ROS) and Ca^+ are central to many signaling and regulation processes in plants. However, mechanisms that govern the reciprocal interrelation of Ca^+ and ROS signaling are only beginning to emerge. NADPH oxidases of the respiratory burst oxidase homolog (RBOH) family are critical components contributing to the generation of ROS while Calcineurin B-like (CBL) Ca^+ sensor proteins together with their interacting kinases (CIPKs) have been shown to function in many Ca^+- signaling processes. In this study, we identify direct functional interactions between both signaling systems. We report that the CBL-interacting pro- tein kinase ClPK26 specifically interacts with the N-terminal domain of RBOHF in yeast two-hybrid analyses and with the full-length RBOHF protein in plant cells. In addition, CIPK26 phosphorylates RBOHF in vitro and co-expression of either CBL1 or CBL9 with CIPK26 strongly enhances ROS production by RBOHF in HEK293T cells. Together, these findings identify a direct interconnection between CBL-ClPK-mediated Ca^+ signaling and ROS signaling in plants and provide evidence for a synergistic activation of the NADPH oxidase RBOHF by direct Ca^+-binding to its EF-hands and Ca2+-induced phospho-rylation by CBL1/9-ClPK26 complexes.
基金This work was supported by the Young Clinical Scientist Award from the Flight Attendant Medical Research Institute(FAMRI-123253_YCSA_Faculty)
文摘Reactive oxygen species(ROS)are pervasive signaling molecules in biological systems.In humans,a lack of ROS causes chronic and extreme bacterial infections,while uncontrolled release of these factors causes pathologies due to excessive inflammation.Professional phagocytes such as neutrophils(PMNs),eosinophils,monocytes,and macrophages use superoxide-generating NADPH oxidase(NOX)as part of their arsenal of antimicrobial mechanisms to produce high levels of ROS.NOX is a multisubunit enzyme complex composed of five essential subunits,two of which are localized in the membrane,while three are localized in the cytosol.In resting phagocytes,the oxidase complex is unassembled and inactive;however,it becomes activated after cytosolic components translocate to the membrane and are assembled into a functional oxidase.The NOX isoforms play a variety of roles in cellular differentiation,development,proliferation,apoptosis,cytoskeletal control,migration,and contraction.Recent studies have identified NOX as a major contributor to disease pathologies,resulting in a shift in focus on inhibiting the formation of potentially harmful free radicals.Therefore,a better understanding of the molecular mechanisms and the transduction pathways involved in NOX-mediated signaling is essential for the development of new therapeutic agents that minimize the hyperproduction of ROS.The current review provides a thorough overview of the various NOX enzymes and their roles in disease pathophysiology,highlights pharmacological strategies,and discusses the importance of computational modeling for future NOX-related studies.
基金Supported by the Natural Science Foundation of Zhejiang Province,China(No.Y2101241)
文摘Objective: To investigate the role of nicatinamide-adenine dinucleotide phosphate (NADPH) oxidase- dependent formation of reactive oxygen species (ROS) in the transforming growth factor β1 (TGF-β 1)-induced epithelial-mesenchymal transition (EMT) in rat peritoneal mesothelial ceils (RPMCs), and the effect of Astragalus injection (AGI) intervention. Methods: Primary RPMCs were cultured to the second generation in vitro. After synchronization for 24 h, the calls were randomly assigned to the following groups: control (Group A), AGI (2 g/mL; Group B), TGF- β1 (10 ng/mL; Group C), TGF- β1 (10 ng/mL) + AGI (2 g/mL; Group D; pretreated for 1 h with AGI before TGF-β 1 stimulation). Reverse transcription-polymerase chain reaction (RT-PCR) and Westem blot analysis were employed to evaluate the mRNA and protein expression of the NADPH oxidase subunit p67phox, e-smooth muscle actin (α -SMA) and E-cadherin. The dichlorofluorescain-sensitive cellular ROS levels were measured by a fluorometric assay and confocal microscopy. Results: TGF- β1 significantly induced NADPH oxidase subunit p67phox mRNA and protein expression in RPMCs, as well as inducing the production of intracellular ROS. AGI inhibited this TGF- β1-induced up-regulation by 39.3% and 47.8%, respectively (P〈0.05), as well as inhibiting the TGF- β 1- induced ROS generation by 56.3% (P〈0.05). TGF- β 1 also induced α-SMA mRNA and protein expression, and down-regulated E-cadhedn mRNA and protein expression (P〈0.05). This effect was suppressed by AGI (P〈0.05). Conclusions: NADPH oxidase-dependent formation of ROS may mediate the TGF- β1-dependent EMT in RPMCs. AGI could inhib/t this process, providing a theoretical basis for AGI in the prevention of peritoneal fibrosis.
文摘Background Thrombin is a multifunctional serine protease that plays a crucial role in hemostasis following tissue injury.In addition to its procoagulation effect, thrombin is also a potent mesenchymal cell mitogen, therefore it plays important roles in the local proliferation of mesenchymal cells in the tissue repair process. Reactive oxygen species (ROS) can induce some human cells to proliferate at lower rates while at higher concentrations they promote cells to undergo apoptosis or necrosis. Accumulative evidence suggests that thrombin can induce some cells to produce ROS. Based on these observations, we provide a hypothesis that thrombin can stimulate human lung fibroblasts to produce ROS, which play an important role in human lung fibroblast proliferation.Methods ROS were detected in fibroblasts at 30 minutes and 60 minutes following thrombin (20 U/ml) exposure using flow cytometry. The ratio of reduced glutathione/oxidized glutathione (GSH/GSSG) was assayed in lung fibroblasts using a commercial kit following treatment with thrombin at different concentrations. NADPH oxidase and the extracellular regulated kinase1/2 (ERK1/2) signaling pathway were detected by Western blotting after thrombin stimulation to lung fibroblasts.Results Thrombin, at 20 U/ml, stimulated human lung fibroblasts (HLF) to generate ROS in a time dependent manner.The ratio of GSH/GSSG in fibroblasts treated with thrombin showed a significant decrease. NADPH oxidase was activated and the ERK1/2 signal pathway was involved in the proliferation process of fibroblasts treated with thrombin.Conclusion The activation of NADPH oxidase by thrombin leads to the production of ROS, which promotes fibroblasts proliferation via activation of the ERK1/2 signaling pathway.
基金the National Natural Science Foundation of China(No.31622006)the Postdoctoral Science Foundation of China(Nos.2018M630683 and 2018T110601)
文摘Production of reactive oxygen species(ROS)is a conserved immune response primarily mediated by NADPH oxidases(NOXs),also known in plants as respiratory burst oxidase homologs(RBOHs).Most microbe-associated molecular patterns(MAMPs)trigger a very fast and transient ROS burst in plants.However,recently,we found that lipopolysaccharides(LPS),a typical bacterial MAMP,triggered a biphasic ROS burst.In this study,we isolated mutants defective in LPS-triggered biphasic ROS burst(delt)in Arabidopsis,and cloned the DELT1 gene that was shown to encode RBOHD.In the delt1-2 allele,the antepenultimate residue,glutamic acid(E919),at the C-terminus of RBOHD was mutated to lysine(K).E919 is a highly conserved residue in NADPH oxidases,and a mutation of the corresponding residue E568 in human NOX2 has been reported to be one of the causes of chronic granulomatous disease.Consistently,we found that residue E919 was indispensable for RBOHD function in the MAMP-induced ROS burst and stomatal closure.It has been suggested that the mutation of this residue in other NADPH oxidases impairs the protein’s stability and complex assembly.However,we found that the E919K mutation did not affect RBOHD protein abundance or the ability of protein association,suggesting that the residue E919 in RBOHD might have a regulatory mechanism different from that of other NOXs.Taken together,our results confirm that the antepenultimate residue E is critical for NADPH oxidases and provide a new insight into the regulatory mechanisms of RBOHD.
文摘Recently, mounting evidence implicating reactive oxygen species (ROS) generated by NADPH oxidase (NOX) enzymes in the pathogenesis of several nenrodegenerative diseases including Amyotrophic lateral sclerosis (ALS), Alzheimer's (AD), Parkinson's (PD) and polyglntamine disease, have arisen. NOX enzymes are transmembrane proteins and generate reactive oxygen species by transporting electrons across lipid membranes. Under normal healthy conditions, low levels of ROS produced by NOX enzymes have been shown to play a role in neuronal differentiation and synaptic plasticity. However, in chronic nenrodegenerative diseases over-activation of NOX in neurons, as well as in astrocytes and microglia, has been linked to pathogenic processes such as oxidative stress, exitotoxicity and neuroinflammation. In this review, we summarize the current knowledge about NOX functions in the healthy central nervous system and especially the role of NOX enzymes in neurodegenerative disease processes.
基金Funded by National Natural Sciences Foundation of China (No. 30800580Beijing Nova Program (No. 2007B014)+3 种基金Beijing Natural Science Foundation (No. 5093025)Beijing Talents Foundation (No. 20071D0501500213)BJUT Science Foundation for Youths (No. 97015999200702)BJUT Scientific Research Starting Foundation for Doctor (No. 52015999200703)
文摘Transcription of human immunodeficiency virus (HIV-1) is activated by viral Tat protein which regulates HIV-long terminal reapaet (LTR) transcription and elongation.