A simple sol-gel method was employed to prepare gadolinium, nitrogen and sulphur tridoped titania decorated on oxidised multiwalled carbon nanotubes(MWCNT/Gd,N,S-Ti O2), using titanium(IV) butoxide and thiourea as...A simple sol-gel method was employed to prepare gadolinium, nitrogen and sulphur tridoped titania decorated on oxidised multiwalled carbon nanotubes(MWCNT/Gd,N,S-Ti O2), using titanium(IV) butoxide and thiourea as titanium and nitrogen and sulphur source, respectively. Samples of varying gadolinium loadings(0.2%, 0.6%, 1.0% and3.0% Gd3+) relative to titania were prepared to investigate the effect of gadolinium loading and the amounts of carbon nanotubes, nitrogen and sulphur were kept constant for all the samples. Furthermore, the prepared nanocomposites were evaluated for the degradation of naphthol blue black(NBB) in water under simulated solar light irradiation. Higher degradation efficiency(95.7%) was recorded for the MWCNT/Gd,N,S-Ti O2(0.6% Gd)nanocomposites. The higher photocatalytic activity is attributed to the combined effect of improved visible light absorption and charge separation due to the synergistic effect of Gd,MWCNTs, N, S and Ti O2. Total organic carbon(TOC) analysis revealed a higher degree of complete mineralisation of naphthol blue black(78.0% TOC removal) which minimises the possible formation of toxic degradation by-products such as the aromatic amines. The MWCNT/Gd,N,S-Ti O2(0.6% Gd) was fairly stable and could be re-used for five times,reaching a maximum degradation efficiency of 91.8% after the five cycles.展开更多
基金Funding from the University of Johannesburg and DST-NRF Centre of Excellence in Strong Materials is highly appreciated
文摘A simple sol-gel method was employed to prepare gadolinium, nitrogen and sulphur tridoped titania decorated on oxidised multiwalled carbon nanotubes(MWCNT/Gd,N,S-Ti O2), using titanium(IV) butoxide and thiourea as titanium and nitrogen and sulphur source, respectively. Samples of varying gadolinium loadings(0.2%, 0.6%, 1.0% and3.0% Gd3+) relative to titania were prepared to investigate the effect of gadolinium loading and the amounts of carbon nanotubes, nitrogen and sulphur were kept constant for all the samples. Furthermore, the prepared nanocomposites were evaluated for the degradation of naphthol blue black(NBB) in water under simulated solar light irradiation. Higher degradation efficiency(95.7%) was recorded for the MWCNT/Gd,N,S-Ti O2(0.6% Gd)nanocomposites. The higher photocatalytic activity is attributed to the combined effect of improved visible light absorption and charge separation due to the synergistic effect of Gd,MWCNTs, N, S and Ti O2. Total organic carbon(TOC) analysis revealed a higher degree of complete mineralisation of naphthol blue black(78.0% TOC removal) which minimises the possible formation of toxic degradation by-products such as the aromatic amines. The MWCNT/Gd,N,S-Ti O2(0.6% Gd) was fairly stable and could be re-used for five times,reaching a maximum degradation efficiency of 91.8% after the five cycles.