The long-range periodically ordered atomic structures in intermetallic nanoparticles(INPs)can significantly enhance both the electrocatalytic activity and electrochemical stability toward the oxygen reduction reaction...The long-range periodically ordered atomic structures in intermetallic nanoparticles(INPs)can significantly enhance both the electrocatalytic activity and electrochemical stability toward the oxygen reduction reaction(ORR)compared to the disordered atomic structures in ordinary solid-solution alloy NPs.Accordingly,through a facile and scalable synthetic method,a series of carbon-supported ultrafine Pt_3Co_(x)Mn_(1-x)ternary INPs are prepared in this work,which possess the"skin-like"ultrathin Pt shells,the ordered L1_(2) atomic structure,and the high-even dispersion on supports(L1_(2)-Pt_3Co_(x)Mn_(1-x)/~SPt INPs/C).Electrochemical results present that the composition-optimized L1_(2)-Pt_3Co_(0.7)Mn_(0.3)/~SPt INPs/C exhibits the highest electrocata lytic activity among the series,which are also much better than those of the pristine ultrafine Pt/C.Besides,it also has a greatly enhanced electrochemical stability.In addition,the effects of annealing temperature and time are further investigated.More importantly,such superior ORR electrocatalytic performance of L1_(2)-Pt_3Co_(0.7)Mn_(0.3)/~SPt INPs/C are also well demonstrated in practical fuel cells.Physicochemical characterization analyses further reveal the major origins of the greatly enhanced ORR electrocata lytic performance:the Pt-Co-Mn alloy-induced geometric and ligand effects as well as the extremely high L1_(2) atomic-ordering degree.This work not only successfully develops a highly active and stable ordered ternary intermetallic ORR electrocatalyst,but also elucidates the corresponding"structure-function"relationship,which can be further applied in designing other intermetallic(electro)catalysts.展开更多
Structure, magnetic properties and magnetostriction of Sm0.9Pr0.1(Fe1-xCox)2 compounds have been investigated by means of X-ray diffraction, a.c. initial susceptibility, extracting sample magnetometer, Mossbauer spec-...Structure, magnetic properties and magnetostriction of Sm0.9Pr0.1(Fe1-xCox)2 compounds have been investigated by means of X-ray diffraction, a.c. initial susceptibility, extracting sample magnetometer, Mossbauer spec-troscopy and standard strain gauge techniques. The lattice parameter a of the MgCu2-type Laves compounds Sm0.9Pr0.1(Fe1-xCox)2 decreases nonlinearly with increasing Co concentration, deviating from the Vegard's law. Curie temperature Tc increases initially from 668 K for x=0 to 694 K for x=0.2 and then decreases to 200 K for x=1.0. The saturation magnetization Ms at temperatures 1.5 K, 77 K and 300 K have the same variation tendency as the composition dependence of Curie temperature, in consistence with rigid-band model. The easy magnetization direction (EMD) of Sm0.9Pr0.1(Fe1-xCox)2 lies along [111] direction in the range x<0.6, and changes to [110] for x=0.8, while Sm0.9Pr0.1Co2 stays in the paramagnetic state at room temperature. The composition dependence of the average hyperfine field,Hhf , demonstrates a similar variation tendency as that of the saturation magnetization Ms and Curie temperature Tc. The spontaneous magnetostricton Am increases with increasing Co content. The saturation magnetostriction λs decreases monotonically with increasing x, which is caused by the increase of magnetostriction constant λ100 with opposite sign to that of Am. A two-sublattice model has been proposed to understand the intermediate region between the [111] and [110] spin configurations, which can also be used to explain the temperature dependence of magnetization.展开更多
The temperature-dependent Gilbert damping in Co2FeAl thin film grown on a Pb(Mg1/3Nb2/3)O3-30%PbTiO3 substrate is investigated by the systematic measurement of physical property measurement system(PPMS) on a series of...The temperature-dependent Gilbert damping in Co2FeAl thin film grown on a Pb(Mg1/3Nb2/3)O3-30%PbTiO3 substrate is investigated by the systematic measurement of physical property measurement system(PPMS) on a series of samples with different substrate temperatures. Varying the substrate temperatures from 350℃ to 500℃, the B2 ordering degrees of Co2FeAl thin films increase, which can lead the Gilbert damping to decrease, indicated by the field-sweep in-plane PPMS measurements. In addition, the measurement result of PPMS demonstrates that the Gilbert damping decreases first with measurement temperature decreasing down to about 150 K, then increases at a measurement temperature of ~ 50 K, and decreases again with the measurement temperature decreasing. There are two independent damping manners, namely bulk damping and surface damping, which contribute to the Gilbert damping. Moreover, the observed peak of Gilbert damping at ~ 50 K can be attributed to the spin re-orientation transition at the Co2FeAl surface, which is similar to the result of the effective magnetization as a function of measurement temperature. The result presents the evidence for further studying the Gilbert damping in Co2FeAl thin film.展开更多
The classical frustrated antiferromagnetic J_1–J_2 model is considered in a description of the classical spin wave for a vector spin system. Its ground state(GS) spin ordering is analyzed by minimizing its energy. Ou...The classical frustrated antiferromagnetic J_1–J_2 model is considered in a description of the classical spin wave for a vector spin system. Its ground state(GS) spin ordering is analyzed by minimizing its energy. Our analytical derivations show that all the spins in the GS phase must lie in planes that are parallel to each other. When applying the derived formulations to concrete lattices such as the square and simple cubic lattices, we find that in the large J_2 region, a large continuous GS degeneracy concluded by a qualitative analysis is lifted, and collinear striped ordering is selected as the GS phase.展开更多
The microstructure and mechanical properties of Mg94Zn2Y4 extruded alloy containing long-period stacking ordered structures were systematically investigated by SEM and TEM analyses. The results show that the 18R-LPSO ...The microstructure and mechanical properties of Mg94Zn2Y4 extruded alloy containing long-period stacking ordered structures were systematically investigated by SEM and TEM analyses. The results show that the 18R-LPSO structure and α-Mg phase are observed in cast Mg94Zn2Y4 alloy. After extrusion, the LPSO structures are delaminated and Mg-slices with width of 50-200 nm are generated. By ageing at 498 K for 36 h, the ageing peak is attained andβ′phase is precipitated. Due to this novel precipitation, the microhardness ofα-Mg matrix increases apparently from HV108.9 to HV129.7. While the microhardness for LPSO structure is stabilized at about HV145. TEM observations and SAED patterns indicate that the β′ phase has unique orientation relationships betweenα-Mg and LPSO structures, the direction in the close-packed planes ofβ′precipitates perpendicular to that ofα-Mg and LPSO structures. The ultimate tensile strength for the peak-aged alloy achieves 410.7 MPa and the significant strength originates from the coexistence ofβ′precipitates and 18R-LPSO structures.展开更多
Ordered mesoporous Fe/TiO2 was prepared by an evaporation-induced self-assembly method. The iron ions were in situ embedded in the pore wall of the TiO2 framework. The catalyst has excellent light-assisted Fenton cata...Ordered mesoporous Fe/TiO2 was prepared by an evaporation-induced self-assembly method. The iron ions were in situ embedded in the pore wall of the TiO2 framework. The catalyst has excellent light-assisted Fenton catalytic performance under UV and visible light irradiation. X-ray diffraction and transmission electron microscopy results showed that the TiO2 samples have an ordered two-dimensional hexagonal pore structure and an anatase phase structure with high crystallinity. The ordered pore structure of the TiO2 photocatalyst with a large specific surface area is beneficial to mass transfer and light harvesting. Furthermore, iron ions can be controlled by embedding them into the TiO2 framework to prevent iron ion loss and inactivation. After five cycles, the reaction rate of the ordered mesoporous Fe/TiO2 remained unchanged, indicating that the material has stable performance and broad application prospects for the purification of environmental pollutants.展开更多
A serial of ordered meso-macroporous phosphotungstic acid(HPW) supported on SiO2 nanocomposites were successfully prepared by a homogeneous precipitation method, using monodispersed polystyrene(PS) microspheres and ca...A serial of ordered meso-macroporous phosphotungstic acid(HPW) supported on SiO2 nanocomposites were successfully prepared by a homogeneous precipitation method, using monodispersed polystyrene(PS) microspheres and cationic surfactant as structure directing agent. These nanocomposites were used as catalysts for oxidative desulfurization(ODS) of model fuel. The materials were characterized by scanning electron microscopy(SEM), transmission electron microscopy(TEM), N2 adsorption-desorption isothrem, X-ray diffraction(XRD), and Fourier transform infrared spectra(FTIR). The characterization results suggested that the as-prepared material possessed ordered meso-macroporous architectures with Keggin type phosphotungstic acid dispersed homogeneously in SiO2 matrix. Under the selected reaction conditions, dibenzothiophene(DBT) in model fuel can be removed within 2 h at room temperature(30 ℃). In addition, only 1.2% of efficiency lose than the fresh catalyst even after 5 cycles.展开更多
Nanocatalysts consisting of three‐dimensionally ordered macroporous(3DOM)TiO2‐supported ultrafine Pd nanoparticles(Pd/3DOM‐TiO2‐GBMR)were readily fabricated by gas bubbling‐assisted membrane reduction(GBMR)method...Nanocatalysts consisting of three‐dimensionally ordered macroporous(3DOM)TiO2‐supported ultrafine Pd nanoparticles(Pd/3DOM‐TiO2‐GBMR)were readily fabricated by gas bubbling‐assisted membrane reduction(GBMR)method.These catalysts had a well‐defined and highly ordered macroporous nanostructure with an average pore size of 280 nm.In addition,ultrafine hemispherical Pd nanoparticles(NPs)with a mean particle size of 1.1 nm were found to be well dispersed over the surface of the 3DOM‐TiO2 support and deposited on the inner walls of the material.The nanostructure of the 3DOM‐TiO2 support ensured efficient contact between soot particles and the catalyst.The large interface area between the ultrafine Pd NPs and the TiO2 also increased the density of sites for O2 activation as a result of the strong metal(Pd)‐support(TiO2)interaction(SMSI).A Pd/3DOM‐TiO2‐GBMR catalyst with ultrafine Pd NPs(1.1 nm)exhibited higher catalytic activity during diesel soot combustion compared with that obtained from a specimen having relatively large Pd NPs(5.0 nm).The T10,T50 and T90 values obtained from the former were 295,370 and 415°C.Both the activity and nanostructure of the Pd/3DOM‐TiO2‐GBMR catalyst were stable over five replicate soot oxidation trials.These results suggest that nanocatalysts having a 3DOM structure together with ultrafine Pd NPs can decrease the amount of Pd required,and that this approach has potential practical applications in the catalytic combustion of diesel soot particles.展开更多
Three-dimensionally ordered(3DOM) macroporous phosphotungstic acid/SiO_2(HPW/SiO_2) materials were prepared by using colloidal crystal as templates and applied for oxidative desulfurization(ODS) of the model fue...Three-dimensionally ordered(3DOM) macroporous phosphotungstic acid/SiO_2(HPW/SiO_2) materials were prepared by using colloidal crystal as templates and applied for oxidative desulfurization(ODS) of the model fuel oil. The obtained HPW/SiO_2 materials were characterized through scanning electron microscopy, powder X-ray diffraction, N_2 sorption, and Fourier transform infrared spectroscopy. The results indicated that 3 DOM HPW/SiO_2 possessed hierarchical pore architectures which contained ordered macropores and disordered mesopores, with the Keggin type HPW embedded in the framework of pore structure. The removal rate of dibenzothiophene(DBT) could reach 100% under the optimum conditions, moreover. The performance was only slightly decreased for the regenerated catalyst after 7 cycles.展开更多
A series of catalysts consisting of three‐dimensionally ordered macroporous(3DOM)x‐CeO2/Al2O3‐supported Au nanoparticles(x=2,10,20,and40wt%)were successfully synthesized using a reduction‐deposition method.These c...A series of catalysts consisting of three‐dimensionally ordered macroporous(3DOM)x‐CeO2/Al2O3‐supported Au nanoparticles(x=2,10,20,and40wt%)were successfully synthesized using a reduction‐deposition method.These catalysts were characterized using scanning electron microscopy,the Brunauer‐Emmett‐Teller method,X‐ray diffraction,transmission electron microscopy,ultraviolet‐visible spectroscopy,and temperature‐programmed reduction by H2.Au nanoparticles of mean particle size5nm were well dispersed and supported on the inner walls of uniform macropores.The3DOM structure improved the contact efficiency between soot and the catalyst.An Al‐Ce‐O solid solution was formed in the multilayer support,i.e.,x‐CeO2/Al2O3,by the incorporation of Al3+ions into the CeO2lattice,which resulted in the creation of extrinsic oxygen vacancies.Strong interactions between the metal(Au)and the support(Ce)increased the amount of active oxygen species,and this promoted soot oxidation.The catalytic performance in soot combustion was evaluated using a temperature‐programmed oxidation technique.The presence of CeO2nanolayers in the3DOM Au/x‐CeO2/Al2O3catalysts clearly improved the catalytic activities in soot oxidation.Among the prepared catalysts,3DOM Au/20%CeO2/Al2O3showed high catalytic activity and stability in diesel soot oxidation.展开更多
PS/SiO2 particles with core-shell structure were synthesized by coating silica on surface of polystyrene(PS) colloidal particles.The reaction parameters,such as initial tetraethyl orthosilicate(TEOS) concentration,wat...PS/SiO2 particles with core-shell structure were synthesized by coating silica on surface of polystyrene(PS) colloidal particles.The reaction parameters,such as initial tetraethyl orthosilicate(TEOS) concentration,water concentration and reaction temperature,have been investigated to control the thickness of silica shells.The shell thickness was prepositional to the square root of the initial concentration of TEOS and first increased with increasing water concentration,reached a maximum at about 2.0 mol/L and then started decreasing beyond that concentration.It was also found that the shell thickness decreased firstly with the reaction temperature added,then tended to a constant.The so-synthesized PS/SiO2 core-shell particles were directly crystallized into 3-D ordered thin film,then sintered at 570℃ into the ordered macroporous thin film.Compared with the conditional method,the present approach avoids repeatedly filling the precursor in the templetes and save time more.展开更多
The conversion of carbon dioxide to chemicals by the electrochemical reactions(ERC)is an efficient solution to the current energy crisis and excess CO_(2) emissions.It is still a great challenge and of significance to...The conversion of carbon dioxide to chemicals by the electrochemical reactions(ERC)is an efficient solution to the current energy crisis and excess CO_(2) emissions.It is still a great challenge and of significance to synthesize a highly selective,efficient,and non-noble metal electrocatalyst that facilitates the ERC reaction.A novel triton X-100(C_(14)H_(22)O(C_(2)H_(4)O)n)assisted electrodeposition method was developed to synthesize the ordered cone-structured tin(OCSn)electrocatalysts with controllable morphology and structure.The results suggest that Triton X-100 plays an important role in directing the structure of the Sn electrocatalysts during the electrodeposition process.The OCSn synthesized at 60 m A cm^(-2) achieves the best performances.It selectively catalyzes the ERC on the onset potential about 110 m V lower than Sn synthesized without Triton X-100.In 0.5 M Na HCO_(3),high faradaic efficiency(92%)for formate product on OCSn has been achieved.More prominently,the catalyst presents excellent stability,showing no performance deterioration during 30 h electrolysis.This work provides an efficient,green,and scalable synthesis method of the electrocatalyst for CO_(2) reduction to formate.展开更多
A series of three‐dimensionally ordered macroporous(3DOM)SnO2‐based catalysts modified by the cations Ce4+,Mn3+,and Cu2+have been prepared by using a colloidal crystal templating method and tested for soot combustio...A series of three‐dimensionally ordered macroporous(3DOM)SnO2‐based catalysts modified by the cations Ce4+,Mn3+,and Cu2+have been prepared by using a colloidal crystal templating method and tested for soot combustion under loose contact condition.XRD and STEM mapping results confirm that all the secondary metal cations have entered the lattice matrix of tetragonal rutile SnO2 to form non‐continuous solid solutions,thus impeding crystallization and improving the surface areas and pore volumes of the modified catalysts.In comparison with regular SnO2 nanoparticles,the 3DOM SnO2 displays evidently improved activity,testifying that the formation of the 3DOM structure can anchor the soot particulates in the macro‐pores,which ensures that the contact of the soot particles with the active sites on the 3DOM skeleton is more easily formed,thus benefiting the target reaction.With the incorporation of the secondary metal cations,the activity of the catalyst can be further improved due to the formation of more abundant mobile oxygen species.In summary,these effects are believed to be the major factors responsible for the activity of the catalyst.展开更多
Sodium-ion hybrid capacitor(SIHC)is one of the most promising alternatives for large-scale energy storage due to its high energy and power densities,natural abundance,and low cost.However,overcoming the imbalance betw...Sodium-ion hybrid capacitor(SIHC)is one of the most promising alternatives for large-scale energy storage due to its high energy and power densities,natural abundance,and low cost.However,overcoming the imbalance between slow Na^(+)reaction kinetics of battery-type anodes and rapid ion adsorption/desorption of capacitive cathodes is a significant challenge.Here,we propose the high-rate-performance NiS_(2)@OMGC anode material composed of monodispersed NiS_(2) nanocrystals(8.8±1.7 nm in size)and N,S-co-doped graphenic carbon(GC).The NiS_(2)@OMGC material has a three-dimensionally ordered macroporous(3DOM)morphology,and numerous NiS_(2) nanocrystals are uniformly embedded in GC,forming a core-shell structure in the local area.Ultrafine NiS_(2) nanocrystals and their nano-microstructure demonstrate high pseudocapacitive Na-storage capability and thus excellent rate performance(355.7 mAh/g at 20.0 A/g).A SIHC device fabricated using NiS_(2)@OMGC and commercial activated carbon(AC)cathode exhibits ultrahigh energy densities(197.4 Wh/kg at 398.8 W/kg)and power densities(43.9 kW/kg at 41.3 Wh/kg),together with a long life span.This outcome exemplifies the rational architecture and composition design of this type of anode material.This strategy can be extended to the design and synthesis of a wide range of high-performance electrode materials for energy storage applications.展开更多
Some new results about the NBU(2) class of life distributions were obtained. Fir stly, it was proved that the decrease with time of the increasing concave orderi ng of the excess lifetime in a renewal process leads to...Some new results about the NBU(2) class of life distributions were obtained. Fir stly, it was proved that the decrease with time of the increasing concave orderi ng of the excess lifetime in a renewal process leads to the NBU(2) property of t he interarrival times. Secondly, the NBU(2) class of life distributions is prove d to be closed under the formation of series systems. Finally, it was also shown that the NBU(2) class is closed under convolution operation.展开更多
The apparent 1^st order rate constant of photodegradation of formaldehyde by carbon containing TiO2 nanoparticles has been investigated by numerical integration of mass transfer equation with measured degradation degr...The apparent 1^st order rate constant of photodegradation of formaldehyde by carbon containing TiO2 nanoparticles has been investigated by numerical integration of mass transfer equation with measured degradation degree using a tubular photoreactor. The carbon containing TiO2 nanoparticles are synthesized by the oxidation of TiCl4 in propane/air flame CVD process with futile fraction up to 0.3 and carbon mass fractions up to 0.22, respectively. Thin TiO2 film is coated on the wall of the tubular reactor by sedimentation method. Effects of rutile mass fraction and carbon content have been examined on the apparent 1 ^st order rate constant and results show that, at 570ppm of formaldehyde loaded air stream, 80% relative humidity and about 100nm thin TiOa film, the 1^st order rate constant increases with increasing rutile mass fraction up to 0.3, occurs a maximum at the carbon content of about 5% by weight and is about 2.5 times of that at carbon content about zero or above 10%.展开更多
After the discovery of fraction quantum Hall states in the 1980s, it became more and more clear that Landau symmetry breaking theory does not describe all possible quantum phases of matter. The new quan- tum phases of...After the discovery of fraction quantum Hall states in the 1980s, it became more and more clear that Landau symmetry breaking theory does not describe all possible quantum phases of matter. The new quan- tum phases of matter were called topologically ordered phases(for gapped cases) or quantum ordered phases (for gapless cases), which correspond to pat- terns of many-body entanglement. One may won- der: besides quantum Hall systems, are there other systems that realize the new topological/quantum order?展开更多
By using the extended homogeneous balance method, the localized coherent structures are studied. A nonlinear transformation was first established, and then the linearization form was obtained based on the extended hom...By using the extended homogeneous balance method, the localized coherent structures are studied. A nonlinear transformation was first established, and then the linearization form was obtained based on the extended homogeneous balance method for the higher order (2 + 1)-dimensional Broer-Kaup equations. Starting from this linearization form equation, a variable separation solution with the entrance of some arbitrary functions and some arbitrary parameters was constructed. The quite rich localized coherent structures were revealed. This method, which can be generalized to other (2 + I) -dimensional nonlinear evolution equation, is simple and powerful.展开更多
基金supported by the National Key Research and Development Program of China(2021YFB4001301)the Science and Technology Commission of Shanghai Municipality(21DZ1208600)the Oceanic Interdisciplinary Program of Shanghai Jiao Tong University(SL2021ZD105)。
文摘The long-range periodically ordered atomic structures in intermetallic nanoparticles(INPs)can significantly enhance both the electrocatalytic activity and electrochemical stability toward the oxygen reduction reaction(ORR)compared to the disordered atomic structures in ordinary solid-solution alloy NPs.Accordingly,through a facile and scalable synthetic method,a series of carbon-supported ultrafine Pt_3Co_(x)Mn_(1-x)ternary INPs are prepared in this work,which possess the"skin-like"ultrathin Pt shells,the ordered L1_(2) atomic structure,and the high-even dispersion on supports(L1_(2)-Pt_3Co_(x)Mn_(1-x)/~SPt INPs/C).Electrochemical results present that the composition-optimized L1_(2)-Pt_3Co_(0.7)Mn_(0.3)/~SPt INPs/C exhibits the highest electrocata lytic activity among the series,which are also much better than those of the pristine ultrafine Pt/C.Besides,it also has a greatly enhanced electrochemical stability.In addition,the effects of annealing temperature and time are further investigated.More importantly,such superior ORR electrocatalytic performance of L1_(2)-Pt_3Co_(0.7)Mn_(0.3)/~SPt INPs/C are also well demonstrated in practical fuel cells.Physicochemical characterization analyses further reveal the major origins of the greatly enhanced ORR electrocata lytic performance:the Pt-Co-Mn alloy-induced geometric and ligand effects as well as the extremely high L1_(2) atomic-ordering degree.This work not only successfully develops a highly active and stable ordered ternary intermetallic ORR electrocatalyst,but also elucidates the corresponding"structure-function"relationship,which can be further applied in designing other intermetallic(electro)catalysts.
基金This work has been supported by the projects No.59725103 and 59871054 of the National Natural Sciences Foundation of China and by the Science and Technology Commnission of Shenyang and Liaoning.Z.J.Guo as aiso indebted to Prof.A.S.Miarkosyan(Russia)for helpful discussions.
文摘Structure, magnetic properties and magnetostriction of Sm0.9Pr0.1(Fe1-xCox)2 compounds have been investigated by means of X-ray diffraction, a.c. initial susceptibility, extracting sample magnetometer, Mossbauer spec-troscopy and standard strain gauge techniques. The lattice parameter a of the MgCu2-type Laves compounds Sm0.9Pr0.1(Fe1-xCox)2 decreases nonlinearly with increasing Co concentration, deviating from the Vegard's law. Curie temperature Tc increases initially from 668 K for x=0 to 694 K for x=0.2 and then decreases to 200 K for x=1.0. The saturation magnetization Ms at temperatures 1.5 K, 77 K and 300 K have the same variation tendency as the composition dependence of Curie temperature, in consistence with rigid-band model. The easy magnetization direction (EMD) of Sm0.9Pr0.1(Fe1-xCox)2 lies along [111] direction in the range x<0.6, and changes to [110] for x=0.8, while Sm0.9Pr0.1Co2 stays in the paramagnetic state at room temperature. The composition dependence of the average hyperfine field,Hhf , demonstrates a similar variation tendency as that of the saturation magnetization Ms and Curie temperature Tc. The spontaneous magnetostricton Am increases with increasing Co content. The saturation magnetostriction λs decreases monotonically with increasing x, which is caused by the increase of magnetostriction constant λ100 with opposite sign to that of Am. A two-sublattice model has been proposed to understand the intermediate region between the [111] and [110] spin configurations, which can also be used to explain the temperature dependence of magnetization.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51671099,11974149,and 51901163)the Program for Changjiang Scholars and Innovative Research Team in University,China(Grant No.IRT-16R35).
文摘The temperature-dependent Gilbert damping in Co2FeAl thin film grown on a Pb(Mg1/3Nb2/3)O3-30%PbTiO3 substrate is investigated by the systematic measurement of physical property measurement system(PPMS) on a series of samples with different substrate temperatures. Varying the substrate temperatures from 350℃ to 500℃, the B2 ordering degrees of Co2FeAl thin films increase, which can lead the Gilbert damping to decrease, indicated by the field-sweep in-plane PPMS measurements. In addition, the measurement result of PPMS demonstrates that the Gilbert damping decreases first with measurement temperature decreasing down to about 150 K, then increases at a measurement temperature of ~ 50 K, and decreases again with the measurement temperature decreasing. There are two independent damping manners, namely bulk damping and surface damping, which contribute to the Gilbert damping. Moreover, the observed peak of Gilbert damping at ~ 50 K can be attributed to the spin re-orientation transition at the Co2FeAl surface, which is similar to the result of the effective magnetization as a function of measurement temperature. The result presents the evidence for further studying the Gilbert damping in Co2FeAl thin film.
基金Supported by the National Natural Science Foundation of China under Grant No 11774002
文摘The classical frustrated antiferromagnetic J_1–J_2 model is considered in a description of the classical spin wave for a vector spin system. Its ground state(GS) spin ordering is analyzed by minimizing its energy. Our analytical derivations show that all the spins in the GS phase must lie in planes that are parallel to each other. When applying the derived formulations to concrete lattices such as the square and simple cubic lattices, we find that in the large J_2 region, a large continuous GS degeneracy concluded by a qualitative analysis is lifted, and collinear striped ordering is selected as the GS phase.
基金Project (BK2010392) supported by the Natural Science Foundation of Jiangsu Province of ChinaProject (3212000502) supported by the Innovation Foundation of Southeast University,China
文摘The microstructure and mechanical properties of Mg94Zn2Y4 extruded alloy containing long-period stacking ordered structures were systematically investigated by SEM and TEM analyses. The results show that the 18R-LPSO structure and α-Mg phase are observed in cast Mg94Zn2Y4 alloy. After extrusion, the LPSO structures are delaminated and Mg-slices with width of 50-200 nm are generated. By ageing at 498 K for 36 h, the ageing peak is attained andβ′phase is precipitated. Due to this novel precipitation, the microhardness ofα-Mg matrix increases apparently from HV108.9 to HV129.7. While the microhardness for LPSO structure is stabilized at about HV145. TEM observations and SAED patterns indicate that the β′ phase has unique orientation relationships betweenα-Mg and LPSO structures, the direction in the close-packed planes ofβ′precipitates perpendicular to that ofα-Mg and LPSO structures. The ultimate tensile strength for the peak-aged alloy achieves 410.7 MPa and the significant strength originates from the coexistence ofβ′precipitates and 18R-LPSO structures.
基金supported by the National Natural Science Foundation of China(21876114,21761142011,51572174)Shanghai Government(17SG44)+2 种基金International Joint Laboratory on Resource Chemistry(IJLRC)Ministry of Education of China(PCSIRT_IRT_16R49)supported by The Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learning and Shuguang Research Program of Shanghai Education Committee~~
文摘Ordered mesoporous Fe/TiO2 was prepared by an evaporation-induced self-assembly method. The iron ions were in situ embedded in the pore wall of the TiO2 framework. The catalyst has excellent light-assisted Fenton catalytic performance under UV and visible light irradiation. X-ray diffraction and transmission electron microscopy results showed that the TiO2 samples have an ordered two-dimensional hexagonal pore structure and an anatase phase structure with high crystallinity. The ordered pore structure of the TiO2 photocatalyst with a large specific surface area is beneficial to mass transfer and light harvesting. Furthermore, iron ions can be controlled by embedding them into the TiO2 framework to prevent iron ion loss and inactivation. After five cycles, the reaction rate of the ordered mesoporous Fe/TiO2 remained unchanged, indicating that the material has stable performance and broad application prospects for the purification of environmental pollutants.
基金Supported by the National Nature Science Foundation of China(No.21476177)
文摘A serial of ordered meso-macroporous phosphotungstic acid(HPW) supported on SiO2 nanocomposites were successfully prepared by a homogeneous precipitation method, using monodispersed polystyrene(PS) microspheres and cationic surfactant as structure directing agent. These nanocomposites were used as catalysts for oxidative desulfurization(ODS) of model fuel. The materials were characterized by scanning electron microscopy(SEM), transmission electron microscopy(TEM), N2 adsorption-desorption isothrem, X-ray diffraction(XRD), and Fourier transform infrared spectra(FTIR). The characterization results suggested that the as-prepared material possessed ordered meso-macroporous architectures with Keggin type phosphotungstic acid dispersed homogeneously in SiO2 matrix. Under the selected reaction conditions, dibenzothiophene(DBT) in model fuel can be removed within 2 h at room temperature(30 ℃). In addition, only 1.2% of efficiency lose than the fresh catalyst even after 5 cycles.
基金supported by the National Natural Science Foundation of China(21673142,21477164)the National High Technology Research and Development Program of China(863 Program,2015AA030903)~~
文摘Nanocatalysts consisting of three‐dimensionally ordered macroporous(3DOM)TiO2‐supported ultrafine Pd nanoparticles(Pd/3DOM‐TiO2‐GBMR)were readily fabricated by gas bubbling‐assisted membrane reduction(GBMR)method.These catalysts had a well‐defined and highly ordered macroporous nanostructure with an average pore size of 280 nm.In addition,ultrafine hemispherical Pd nanoparticles(NPs)with a mean particle size of 1.1 nm were found to be well dispersed over the surface of the 3DOM‐TiO2 support and deposited on the inner walls of the material.The nanostructure of the 3DOM‐TiO2 support ensured efficient contact between soot particles and the catalyst.The large interface area between the ultrafine Pd NPs and the TiO2 also increased the density of sites for O2 activation as a result of the strong metal(Pd)‐support(TiO2)interaction(SMSI).A Pd/3DOM‐TiO2‐GBMR catalyst with ultrafine Pd NPs(1.1 nm)exhibited higher catalytic activity during diesel soot combustion compared with that obtained from a specimen having relatively large Pd NPs(5.0 nm).The T10,T50 and T90 values obtained from the former were 295,370 and 415°C.Both the activity and nanostructure of the Pd/3DOM‐TiO2‐GBMR catalyst were stable over five replicate soot oxidation trials.These results suggest that nanocatalysts having a 3DOM structure together with ultrafine Pd NPs can decrease the amount of Pd required,and that this approach has potential practical applications in the catalytic combustion of diesel soot particles.
基金the National Nature Science Foundation of China(No.21476177)
文摘Three-dimensionally ordered(3DOM) macroporous phosphotungstic acid/SiO_2(HPW/SiO_2) materials were prepared by using colloidal crystal as templates and applied for oxidative desulfurization(ODS) of the model fuel oil. The obtained HPW/SiO_2 materials were characterized through scanning electron microscopy, powder X-ray diffraction, N_2 sorption, and Fourier transform infrared spectroscopy. The results indicated that 3 DOM HPW/SiO_2 possessed hierarchical pore architectures which contained ordered macropores and disordered mesopores, with the Keggin type HPW embedded in the framework of pore structure. The removal rate of dibenzothiophene(DBT) could reach 100% under the optimum conditions, moreover. The performance was only slightly decreased for the regenerated catalyst after 7 cycles.
基金supported by the National High Technology Research and Development Program of China(863 Program,2015AA034603)the National Natural Science Foundation of China(21477146,21673142 and 21303263)+2 种基金the Beijing Nova Program(Z141109001814072)the Specialized Research Fund for the Doctoral Program of Higher Education(20130007120011)the Science Foundation of China University of Petroleum-Beijing(YJRC-2013-13,2462013BJRC003)~~
文摘A series of catalysts consisting of three‐dimensionally ordered macroporous(3DOM)x‐CeO2/Al2O3‐supported Au nanoparticles(x=2,10,20,and40wt%)were successfully synthesized using a reduction‐deposition method.These catalysts were characterized using scanning electron microscopy,the Brunauer‐Emmett‐Teller method,X‐ray diffraction,transmission electron microscopy,ultraviolet‐visible spectroscopy,and temperature‐programmed reduction by H2.Au nanoparticles of mean particle size5nm were well dispersed and supported on the inner walls of uniform macropores.The3DOM structure improved the contact efficiency between soot and the catalyst.An Al‐Ce‐O solid solution was formed in the multilayer support,i.e.,x‐CeO2/Al2O3,by the incorporation of Al3+ions into the CeO2lattice,which resulted in the creation of extrinsic oxygen vacancies.Strong interactions between the metal(Au)and the support(Ce)increased the amount of active oxygen species,and this promoted soot oxidation.The catalytic performance in soot combustion was evaluated using a temperature‐programmed oxidation technique.The presence of CeO2nanolayers in the3DOM Au/x‐CeO2/Al2O3catalysts clearly improved the catalytic activities in soot oxidation.Among the prepared catalysts,3DOM Au/20%CeO2/Al2O3showed high catalytic activity and stability in diesel soot oxidation.
基金Supported by the National Natural Science Foundation of China(No.:20221603)
文摘PS/SiO2 particles with core-shell structure were synthesized by coating silica on surface of polystyrene(PS) colloidal particles.The reaction parameters,such as initial tetraethyl orthosilicate(TEOS) concentration,water concentration and reaction temperature,have been investigated to control the thickness of silica shells.The shell thickness was prepositional to the square root of the initial concentration of TEOS and first increased with increasing water concentration,reached a maximum at about 2.0 mol/L and then started decreasing beyond that concentration.It was also found that the shell thickness decreased firstly with the reaction temperature added,then tended to a constant.The so-synthesized PS/SiO2 core-shell particles were directly crystallized into 3-D ordered thin film,then sintered at 570℃ into the ordered macroporous thin film.Compared with the conditional method,the present approach avoids repeatedly filling the precursor in the templetes and save time more.
基金the financially support of the National Natural Science Foundation of China(No.21576255 and No.21577141)Dalian Science Fund for Distinguished Young Scholars(2018RJ09)。
文摘The conversion of carbon dioxide to chemicals by the electrochemical reactions(ERC)is an efficient solution to the current energy crisis and excess CO_(2) emissions.It is still a great challenge and of significance to synthesize a highly selective,efficient,and non-noble metal electrocatalyst that facilitates the ERC reaction.A novel triton X-100(C_(14)H_(22)O(C_(2)H_(4)O)n)assisted electrodeposition method was developed to synthesize the ordered cone-structured tin(OCSn)electrocatalysts with controllable morphology and structure.The results suggest that Triton X-100 plays an important role in directing the structure of the Sn electrocatalysts during the electrodeposition process.The OCSn synthesized at 60 m A cm^(-2) achieves the best performances.It selectively catalyzes the ERC on the onset potential about 110 m V lower than Sn synthesized without Triton X-100.In 0.5 M Na HCO_(3),high faradaic efficiency(92%)for formate product on OCSn has been achieved.More prominently,the catalyst presents excellent stability,showing no performance deterioration during 30 h electrolysis.This work provides an efficient,green,and scalable synthesis method of the electrocatalyst for CO_(2) reduction to formate.
基金the Natural Science Foundation of China(21567016,21503106)the Natural Science Foundation of Jiangxi Province(20171BAB213013)+3 种基金the Education Department Foundation of Jiangxi Province(KJLD14005)National Key Research and Development Program of China(2016YFC0209302)the Innovation Fund Designated for Graduate Students of Jiangxi Province(YC2015-B017)the Innovation Fund Designated for Undergraduate Students of China(201701035)~~
文摘A series of three‐dimensionally ordered macroporous(3DOM)SnO2‐based catalysts modified by the cations Ce4+,Mn3+,and Cu2+have been prepared by using a colloidal crystal templating method and tested for soot combustion under loose contact condition.XRD and STEM mapping results confirm that all the secondary metal cations have entered the lattice matrix of tetragonal rutile SnO2 to form non‐continuous solid solutions,thus impeding crystallization and improving the surface areas and pore volumes of the modified catalysts.In comparison with regular SnO2 nanoparticles,the 3DOM SnO2 displays evidently improved activity,testifying that the formation of the 3DOM structure can anchor the soot particulates in the macro‐pores,which ensures that the contact of the soot particles with the active sites on the 3DOM skeleton is more easily formed,thus benefiting the target reaction.With the incorporation of the secondary metal cations,the activity of the catalyst can be further improved due to the formation of more abundant mobile oxygen species.In summary,these effects are believed to be the major factors responsible for the activity of the catalyst.
基金supported by the National Natural Science Foundation of Tianjin(No.20JCQNJC01280)the National Natural Science Foundation of China(No.21905201)+1 种基金the support of the scientifi c research project from China Three Gorges Corporation(No.202103406)supported by Tohoku University and JSPS KAKENHI(No.JP16J06828).
文摘Sodium-ion hybrid capacitor(SIHC)is one of the most promising alternatives for large-scale energy storage due to its high energy and power densities,natural abundance,and low cost.However,overcoming the imbalance between slow Na^(+)reaction kinetics of battery-type anodes and rapid ion adsorption/desorption of capacitive cathodes is a significant challenge.Here,we propose the high-rate-performance NiS_(2)@OMGC anode material composed of monodispersed NiS_(2) nanocrystals(8.8±1.7 nm in size)and N,S-co-doped graphenic carbon(GC).The NiS_(2)@OMGC material has a three-dimensionally ordered macroporous(3DOM)morphology,and numerous NiS_(2) nanocrystals are uniformly embedded in GC,forming a core-shell structure in the local area.Ultrafine NiS_(2) nanocrystals and their nano-microstructure demonstrate high pseudocapacitive Na-storage capability and thus excellent rate performance(355.7 mAh/g at 20.0 A/g).A SIHC device fabricated using NiS_(2)@OMGC and commercial activated carbon(AC)cathode exhibits ultrahigh energy densities(197.4 Wh/kg at 398.8 W/kg)and power densities(43.9 kW/kg at 41.3 Wh/kg),together with a long life span.This outcome exemplifies the rational architecture and composition design of this type of anode material.This strategy can be extended to the design and synthesis of a wide range of high-performance electrode materials for energy storage applications.
文摘Some new results about the NBU(2) class of life distributions were obtained. Fir stly, it was proved that the decrease with time of the increasing concave orderi ng of the excess lifetime in a renewal process leads to the NBU(2) property of t he interarrival times. Secondly, the NBU(2) class of life distributions is prove d to be closed under the formation of series systems. Finally, it was also shown that the NBU(2) class is closed under convolution operation.
文摘The apparent 1^st order rate constant of photodegradation of formaldehyde by carbon containing TiO2 nanoparticles has been investigated by numerical integration of mass transfer equation with measured degradation degree using a tubular photoreactor. The carbon containing TiO2 nanoparticles are synthesized by the oxidation of TiCl4 in propane/air flame CVD process with futile fraction up to 0.3 and carbon mass fractions up to 0.22, respectively. Thin TiO2 film is coated on the wall of the tubular reactor by sedimentation method. Effects of rutile mass fraction and carbon content have been examined on the apparent 1 ^st order rate constant and results show that, at 570ppm of formaldehyde loaded air stream, 80% relative humidity and about 100nm thin TiOa film, the 1^st order rate constant increases with increasing rutile mass fraction up to 0.3, occurs a maximum at the carbon content of about 5% by weight and is about 2.5 times of that at carbon content about zero or above 10%.
文摘After the discovery of fraction quantum Hall states in the 1980s, it became more and more clear that Landau symmetry breaking theory does not describe all possible quantum phases of matter. The new quan- tum phases of matter were called topologically ordered phases(for gapped cases) or quantum ordered phases (for gapless cases), which correspond to pat- terns of many-body entanglement. One may won- der: besides quantum Hall systems, are there other systems that realize the new topological/quantum order?
文摘By using the extended homogeneous balance method, the localized coherent structures are studied. A nonlinear transformation was first established, and then the linearization form was obtained based on the extended homogeneous balance method for the higher order (2 + 1)-dimensional Broer-Kaup equations. Starting from this linearization form equation, a variable separation solution with the entrance of some arbitrary functions and some arbitrary parameters was constructed. The quite rich localized coherent structures were revealed. This method, which can be generalized to other (2 + I) -dimensional nonlinear evolution equation, is simple and powerful.