This paper discusses H-infinity state feedback control for a networked control system with time-varying delays. Based on the flee-weighing matrix method, a dehy-dependent stability criterion satisfying a prescribed H-...This paper discusses H-infinity state feedback control for a networked control system with time-varying delays. Based on the flee-weighing matrix method, a dehy-dependent stability criterion satisfying a prescribed H-infinity norm bound is presented for an NCS with unknown, time-varying and bounded delays. And then, the criterion is transformed into sufficient conditions based on linear matrix inequalities for H-infinity control. The conditions thus obtained are also used to design an H-infinity state feedback controller. This design method is further extended to solve the design problem of robust H-infinity state feedback control. A numerical example demonstrates the validity of the method.展开更多
Both D-stability and finite L2-gain properties are studiedfor a class of uncertain discrete-time systems with timevaryingnetwork-induced delays. By using coordinate transformand delay partition, the D-stability and H...Both D-stability and finite L2-gain properties are studiedfor a class of uncertain discrete-time systems with timevaryingnetwork-induced delays. By using coordinate transformand delay partition, the D-stability and H∞ performance problemsfor such networked control systems (NCSs) are equivalentlytransferred into the corresponding problems for switching systemswith arbitrary switching. Then, a sufficient condition for the existenceof the robust D-stabilizing controllers is derived in termsof linear matrix inequality (LMI), and the design method is alsopresented for the state feedback controllers which guarantee thatall the closed-loop poles remain inside the specified disk D(α,r)and the desired disturbance attenuation level. Finally, an illustrativeexample is given to demonstrate the effectiveness of the proposedresults.展开更多
A new problem that classical statistical methods are incapable of solving is reliability modeling and assessment when multiple numerical control machine tools(NCMTs) reveal zero failures after a reliability test. Thus...A new problem that classical statistical methods are incapable of solving is reliability modeling and assessment when multiple numerical control machine tools(NCMTs) reveal zero failures after a reliability test. Thus, the zero-failure data form and corresponding Bayesian model are developed to solve the zero-failure problem of NCMTs, for which no previous suitable statistical model has been developed. An expert-judgment process that incorporates prior information is presented to solve the difficulty in obtaining reliable prior distributions of Weibull parameters. The equations for the posterior distribution of the parameter vector and the Markov chain Monte Carlo(MCMC) algorithm are derived to solve the difficulty of calculating high-dimensional integration and to obtain parameter estimators. The proposed method is applied to a real case; a corresponding programming code and trick are developed to implement an MCMC simulation in Win BUGS, and a mean time between failures(MTBF) of 1057.9 h is obtained. Given its ability to combine expert judgment, prior information, and data, the proposed reliability modeling and assessment method under the zero failure of NCMTs is validated.展开更多
This paper investigates a signal difference-based dead- band H∞ control approach for networked control systems (NCSs) with limited resources. The effects of variable network-induced de- lays, sampling intervals and...This paper investigates a signal difference-based dead- band H∞ control approach for networked control systems (NCSs) with limited resources. The effects of variable network-induced de- lays, sampling intervals and data transmitting deadbands are con- sidered simultaneously and the model of the NCS is presented. A Lyapunov functional is adopted, which makes full use of the network characteristic information including the bounds of net- work delay (BND), the bounds of sampling interval (BSI) and the bounds of transmission deadband (BTD). In the meanwhile, the new H∞ performance analysis and controller design conditions for the NCSs are proposed, which describe the relationship of BND, BSI, BTD and the system's performance. Three examples are used to illustrate the advantages of the proposed methods. The results have shown that the proposed method not only effectively reduces the data traffic, but also guarantees the system asymptotically sta- ble and achieves the prescribed H∞ disturbance attenuation level.展开更多
In networked control system (NCS) where control loop is closed over communication network, limited data rate may deteriorate control performance even destabilize the control system. In this paper, performance analysis...In networked control system (NCS) where control loop is closed over communication network, limited data rate may deteriorate control performance even destabilize the control system. In this paper, performance analysis of a typical second-order control system with data rate constraints is conducted, and the concept of critical data rate (CDR) is presented. In order to find the CDR in NCS, an approximate searching method is proposed to guarantee acceptable control performance.展开更多
针对网络控制系统(networked control system,NCS)中随机时延导致系统性能下降的问题,利用粒子群优化(particle swarm optimization,PSO)的最小二乘支持向量机(least square support vector machine,LSSVM)建立NCS中随机时延预测模型,...针对网络控制系统(networked control system,NCS)中随机时延导致系统性能下降的问题,利用粒子群优化(particle swarm optimization,PSO)的最小二乘支持向量机(least square support vector machine,LSSVM)建立NCS中随机时延预测模型,精确预测未来时刻的时延;同时利用该预测算法预测的时延通过快速隐式广义预测控制算法对NCS随机时延进行补偿。仿真结果表明,PSO优化的LS-SVM算法对随机时延具有较高的预测精度,同时快速隐式广义预测控制算法可使系统的输出很好地跟踪参考轨迹,保证系统良好的控制效果。展开更多
文摘This paper discusses H-infinity state feedback control for a networked control system with time-varying delays. Based on the flee-weighing matrix method, a dehy-dependent stability criterion satisfying a prescribed H-infinity norm bound is presented for an NCS with unknown, time-varying and bounded delays. And then, the criterion is transformed into sufficient conditions based on linear matrix inequalities for H-infinity control. The conditions thus obtained are also used to design an H-infinity state feedback controller. This design method is further extended to solve the design problem of robust H-infinity state feedback control. A numerical example demonstrates the validity of the method.
基金supported by the National Natural Science Foundation of China(61403344)
文摘Both D-stability and finite L2-gain properties are studiedfor a class of uncertain discrete-time systems with timevaryingnetwork-induced delays. By using coordinate transformand delay partition, the D-stability and H∞ performance problemsfor such networked control systems (NCSs) are equivalentlytransferred into the corresponding problems for switching systemswith arbitrary switching. Then, a sufficient condition for the existenceof the robust D-stabilizing controllers is derived in termsof linear matrix inequality (LMI), and the design method is alsopresented for the state feedback controllers which guarantee thatall the closed-loop poles remain inside the specified disk D(α,r)and the desired disturbance attenuation level. Finally, an illustrativeexample is given to demonstrate the effectiveness of the proposedresults.
基金Project(2014ZX04014-011)supported by State Key Science&Technology Program of ChinaProject([2016]414)supported by the 13th Five-year Program of Education Department of Jilin Province,China
文摘A new problem that classical statistical methods are incapable of solving is reliability modeling and assessment when multiple numerical control machine tools(NCMTs) reveal zero failures after a reliability test. Thus, the zero-failure data form and corresponding Bayesian model are developed to solve the zero-failure problem of NCMTs, for which no previous suitable statistical model has been developed. An expert-judgment process that incorporates prior information is presented to solve the difficulty in obtaining reliable prior distributions of Weibull parameters. The equations for the posterior distribution of the parameter vector and the Markov chain Monte Carlo(MCMC) algorithm are derived to solve the difficulty of calculating high-dimensional integration and to obtain parameter estimators. The proposed method is applied to a real case; a corresponding programming code and trick are developed to implement an MCMC simulation in Win BUGS, and a mean time between failures(MTBF) of 1057.9 h is obtained. Given its ability to combine expert judgment, prior information, and data, the proposed reliability modeling and assessment method under the zero failure of NCMTs is validated.
基金supported by the National Natural Science Foundation of China(6110410661473195)+1 种基金the Natural Science Foundation of Liaoning Province(201202156)the Program for Liaoning Excellent Talents in University(LJQ2012100)
文摘This paper investigates a signal difference-based dead- band H∞ control approach for networked control systems (NCSs) with limited resources. The effects of variable network-induced de- lays, sampling intervals and data transmitting deadbands are con- sidered simultaneously and the model of the NCS is presented. A Lyapunov functional is adopted, which makes full use of the network characteristic information including the bounds of net- work delay (BND), the bounds of sampling interval (BSI) and the bounds of transmission deadband (BTD). In the meanwhile, the new H∞ performance analysis and controller design conditions for the NCSs are proposed, which describe the relationship of BND, BSI, BTD and the system's performance. Three examples are used to illustrate the advantages of the proposed methods. The results have shown that the proposed method not only effectively reduces the data traffic, but also guarantees the system asymptotically sta- ble and achieves the prescribed H∞ disturbance attenuation level.
基金supported by the Natural Science Foundation of Shanghai (Grant No.06ZR14131)the Key Lab Project of Shanghai(Grant No.08DZ2272400)the Excellent Discipline Head Plan Project of Shanghai (Grant No.08XD14018)
文摘In networked control system (NCS) where control loop is closed over communication network, limited data rate may deteriorate control performance even destabilize the control system. In this paper, performance analysis of a typical second-order control system with data rate constraints is conducted, and the concept of critical data rate (CDR) is presented. In order to find the CDR in NCS, an approximate searching method is proposed to guarantee acceptable control performance.
文摘针对网络控制系统(networked control system,NCS)中随机时延导致系统性能下降的问题,利用粒子群优化(particle swarm optimization,PSO)的最小二乘支持向量机(least square support vector machine,LSSVM)建立NCS中随机时延预测模型,精确预测未来时刻的时延;同时利用该预测算法预测的时延通过快速隐式广义预测控制算法对NCS随机时延进行补偿。仿真结果表明,PSO优化的LS-SVM算法对随机时延具有较高的预测精度,同时快速隐式广义预测控制算法可使系统的输出很好地跟踪参考轨迹,保证系统良好的控制效果。