期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于NCSPSO-AFSA优化SVM的林木冠层图像分割 被引量:6
1
作者 张冬 刘俊焱 +1 位作者 薛联凤 云挺 《西北农林科技大学学报(自然科学版)》 CSCD 北大核心 2016年第3期118-124,共7页
【目的】对林木冠层图像采用NCSPSO-AFSA优化支持向量机(SVM)进行图像分割,提取树干分割图,以进一步提高分割效果。【方法】对现有的小生境和交叉算子的粒子群算法(NCSPSO)进行优化,并与人工鱼群算(AFSA)混合,寻找最优惩罚系数C... 【目的】对林木冠层图像采用NCSPSO-AFSA优化支持向量机(SVM)进行图像分割,提取树干分割图,以进一步提高分割效果。【方法】对现有的小生境和交叉算子的粒子群算法(NCSPSO)进行优化,并与人工鱼群算(AFSA)混合,寻找最优惩罚系数C和高斯核函数中的参数γ;然后运用SVM方法对训练样本进行综合训练,以建立最佳分类模型;最后对香樟树、马褂木和杨树的冠层图像进行分割,并与AFSA算法、NCSPSO算法的分割效果进行比较。【结果】AFSA、NCSPSO、NCSPSO-AFSA算法的平均运行时间分别为178.909,154.661和97.213s,平均分割准确率分别为90.83%,94.08%和98.90%,表明改进的NCSPSO-AFSA混合算法在效率上较其他2种算法提高了63%以上,而且分割准确率提高了5%~8%。【结论】运用NCSPSO-AFSA优化SVM方法对林木冠层图像进行树干图像分割,可得到最佳分割效果。 展开更多
关键词 林木图像分割 ncspso 人工鱼群 支持向量机
下载PDF
基于改进的NCSPSO-AFSA对SVM参数的优化及其应用 被引量:3
2
作者 冯哲 陈云凤 +2 位作者 周宇 云挺 邓玉和 《江苏科技大学学报(自然科学版)》 CAS 2014年第4期395-402,共8页
为了找到支持向量机(SVM)最佳的分类参数,用以构建适合纹理图像分割的SVM分类器,文中是将基于小生境和交叉选择算子的粒子群算法(NCSPSO)引入变异算子和族外竞争机制加以改进后与人工鱼群算法(AFSA)混合,提出了一种改进的NCSPSO-AFSA混... 为了找到支持向量机(SVM)最佳的分类参数,用以构建适合纹理图像分割的SVM分类器,文中是将基于小生境和交叉选择算子的粒子群算法(NCSPSO)引入变异算子和族外竞争机制加以改进后与人工鱼群算法(AFSA)混合,提出了一种改进的NCSPSO-AFSA混合算法优化支持向量机参数,并分别与AFSA算法,粒子群算法(PSO),NCSPSO算法在图像分割准确率、参数寻优时间、图像分割时间等方面进行对比和分析,实验表明文中算法能够更好地获得适用于纹理图像分割的SVM参数,在缩短图像分割时间的同时提高了图像分割准确率,相比较其他算法,文中算法稳健性更好.将此方法应用于电镜及超声纹理图像分割中能较好地提取出目标区域,图像边缘部分的分类也很清晰. 展开更多
关键词 ncspso算法 人工鱼群算法 支持向量机 图像分割
下载PDF
基于改进的NCSPSO优化SVM的木材缺陷图像分割 被引量:4
3
作者 刘俊焱 尹婷婷 +1 位作者 陈云凤 周宇 《林业机械与木工设备》 2014年第10期26-29,34,共5页
针对木材缺陷图像,采用基于小生境和交叉算子的粒子群算法(NCSPSO)优化支持向量机(SVM)进行图像分割,提取木材缺陷分割图。主要对NCSPSO算法进行改进,寻找最优惩罚系数C和高斯核函数中的参数,然后采用SVM方法对训练样本进行综合训练,以... 针对木材缺陷图像,采用基于小生境和交叉算子的粒子群算法(NCSPSO)优化支持向量机(SVM)进行图像分割,提取木材缺陷分割图。主要对NCSPSO算法进行改进,寻找最优惩罚系数C和高斯核函数中的参数,然后采用SVM方法对训练样本进行综合训练,以建立最佳分类模型,并对木材缺陷图像分割测试。与模拟退火法(SA)及原NCSPSO算法进行对比实验,从而验证改进NCSPSO算法的优越性。 展开更多
关键词 图像分割 ncspso算法 支持向量机 木材缺陷
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部