A theoretical design of a multi-layer for Nd:YAG mirrors resonator is described in this work. An output coupler was designed and fabricated by successive thin layers to achieve very high transmittance at optical wavel...A theoretical design of a multi-layer for Nd:YAG mirrors resonator is described in this work. An output coupler was designed and fabricated by successive thin layers to achieve very high transmittance at optical wavelengths around 1064 nm for Nd:YAG mirrors resonator. The different film optical filters were used to control the transmittance and reflectance. The three samples of dielectric materials composed of HfO2/Y2O3, Sc2O3 + MgO, and Ta2O5 + TiO2 were used and compared with each other in transmittance, reflectance, full width at half maximum (FWHM), physical thickness, optical thickness, geometric thickness, and incident angles by the software [1].展开更多
文摘A theoretical design of a multi-layer for Nd:YAG mirrors resonator is described in this work. An output coupler was designed and fabricated by successive thin layers to achieve very high transmittance at optical wavelengths around 1064 nm for Nd:YAG mirrors resonator. The different film optical filters were used to control the transmittance and reflectance. The three samples of dielectric materials composed of HfO2/Y2O3, Sc2O3 + MgO, and Ta2O5 + TiO2 were used and compared with each other in transmittance, reflectance, full width at half maximum (FWHM), physical thickness, optical thickness, geometric thickness, and incident angles by the software [1].