N-nitrosodimethylamine(NDMA) is an emerging disinfection by-product which is formed during water disinfection in the presence of amine-based precursors. Ranitidine, as one kind of amine-based pharmaceuticals, has be...N-nitrosodimethylamine(NDMA) is an emerging disinfection by-product which is formed during water disinfection in the presence of amine-based precursors. Ranitidine, as one kind of amine-based pharmaceuticals, has been identified as NDMA precursor with high NDMA molar conversion during chloramination. This study focused on the characterization of NDMA formation during ozonation of ranitidine. Influences of operational variables(ozone dose, pH value) and water matrix on NDMA generation as well as ranitidine degradation were evaluated. The results indicate high reactivity of ranitidine with ozone.Dimethylamine(DMA) and NDMA were generated due to ranitidine oxidation. High pH value caused more NDMA accumulation. NDMA formation was inhibited under acid conditions(pH ≤ 5) mainly due to the protonation of amines. Water matrix such as HCO-3and humic acid impacted NDMA generation due to UOH scavenging. Compared with UOH,ozone molecules dominated the productions of DMA and NDMA. However, UOH was a critical factor in NDMA degradation. Transformation products of ranitidine during ozonation were identified using gas chromatography–mass spectrometry. Among these products, just DMA and N,N-dimethylformamide could contribute to NDMA formation due to the DMA group in the molecular structures. The NDMA formation pathway from ranitidine ozonation was also proposed.展开更多
Six wastewater treatment plants (WWTPs) were investigated to evaluate the occurrence and removal of N-nitrosodimethylamine (NDMA), NDMA formation potential (FP) and four specific NDMA precursors, dimethylamine ...Six wastewater treatment plants (WWTPs) were investigated to evaluate the occurrence and removal of N-nitrosodimethylamine (NDMA), NDMA formation potential (FP) and four specific NDMA precursors, dimethylamine (DMA), trimethylamine (TMA), dimethyl- formamide (DMFA) and dimethylaminobenzene (DMAB). DMA and tertiary amines with DMA functional group commonly existed in municipal wastewater. Chemically enhanced primary process (CEPP) had no effect on removal of either NDMA or NDMA FP. In WWTPs with secondary treatment processes, considerable variability was observed in the removal of NDMA (19%-85%) and NDMA FP (16%-76%), moreover, there was no definite relationship between the removal of NDMA and NDMA FP. DMA was well removed in all the six surveyed WWTPs; its removal efficiency was greater than 97%. For the removal of tertiary amines, biologic treatment processes with nitrification and denitrification had better removal efficiency than conventional activated sludge process. The best removal efficiencies for TMA, DMFA and DMAB were 95%, 68% and 72%, respectively. CEPP could remove 73% of TMA, 23% of DMFA and 36% of DMAB. After UV disinfection, only 17% of NDMA was removed due to low dosage of UV was applied in WWTP. Although chlorination could reduce NDMA precursors, NDMA concentration was actually increased after chlorination.展开更多
基金supported by the National Natural Science Foundation of China (Nos.50878165 and no.51608322)
文摘N-nitrosodimethylamine(NDMA) is an emerging disinfection by-product which is formed during water disinfection in the presence of amine-based precursors. Ranitidine, as one kind of amine-based pharmaceuticals, has been identified as NDMA precursor with high NDMA molar conversion during chloramination. This study focused on the characterization of NDMA formation during ozonation of ranitidine. Influences of operational variables(ozone dose, pH value) and water matrix on NDMA generation as well as ranitidine degradation were evaluated. The results indicate high reactivity of ranitidine with ozone.Dimethylamine(DMA) and NDMA were generated due to ranitidine oxidation. High pH value caused more NDMA accumulation. NDMA formation was inhibited under acid conditions(pH ≤ 5) mainly due to the protonation of amines. Water matrix such as HCO-3and humic acid impacted NDMA generation due to UOH scavenging. Compared with UOH,ozone molecules dominated the productions of DMA and NDMA. However, UOH was a critical factor in NDMA degradation. Transformation products of ranitidine during ozonation were identified using gas chromatography–mass spectrometry. Among these products, just DMA and N,N-dimethylformamide could contribute to NDMA formation due to the DMA group in the molecular structures. The NDMA formation pathway from ranitidine ozonation was also proposed.
文摘Six wastewater treatment plants (WWTPs) were investigated to evaluate the occurrence and removal of N-nitrosodimethylamine (NDMA), NDMA formation potential (FP) and four specific NDMA precursors, dimethylamine (DMA), trimethylamine (TMA), dimethyl- formamide (DMFA) and dimethylaminobenzene (DMAB). DMA and tertiary amines with DMA functional group commonly existed in municipal wastewater. Chemically enhanced primary process (CEPP) had no effect on removal of either NDMA or NDMA FP. In WWTPs with secondary treatment processes, considerable variability was observed in the removal of NDMA (19%-85%) and NDMA FP (16%-76%), moreover, there was no definite relationship between the removal of NDMA and NDMA FP. DMA was well removed in all the six surveyed WWTPs; its removal efficiency was greater than 97%. For the removal of tertiary amines, biologic treatment processes with nitrification and denitrification had better removal efficiency than conventional activated sludge process. The best removal efficiencies for TMA, DMFA and DMAB were 95%, 68% and 72%, respectively. CEPP could remove 73% of TMA, 23% of DMFA and 36% of DMAB. After UV disinfection, only 17% of NDMA was removed due to low dosage of UV was applied in WWTP. Although chlorination could reduce NDMA precursors, NDMA concentration was actually increased after chlorination.