Environmental changes are significantly modifying terrestrial vegetation dynamics,with serious consequences on Earth system functioning and provision of ecosystem services.Land conditions are an essential element unde...Environmental changes are significantly modifying terrestrial vegetation dynamics,with serious consequences on Earth system functioning and provision of ecosystem services.Land conditions are an essential element underpinning global sustainability frameworks,such as the Sustainable Development Goals(SDGs),requiring effective solutions to assess the impacts of changing land conditions induced by various driving forces.At the global scale,long-term increase of vegetation greening has been widely reported notably in seasonally snow-covered ecosystems as a response to warming climate.However,greening trends at the national scale have received less attention,although countries like Switzerland are prone to important changing climate conditions.Hereby,we used a 35-year satellite-derived annual and seasonal time-series of Normalized Difference Vegetation Index(NDVI)to assess vegetation greenness evolution at different spatial and temporal scales across Switzerland and related them to temperature,precipitation,and land cover to investigate possible responses of changing climatic conditions.Results indicate that there is a statistically significant greening trend at the national scale with an NDVI mean increasing slope of 0.6%/year for the 61%significant pixels across Switzerland.In particular,the seasonal mean NDVI shows an important break for winter,autumn and spring seasons starting from 2010,potentially indicating a critical point of changing land conditions.At biogeographical scale,we observed an apparent clustering(Jura-Plateau;Northern-Southern Alps;Eastern-Western Alps)related to landscape characteristics,while forested land cover classes are more responsive to NDVI changes.Finally,the NDVI values are mostly a function of temperature at elevations below the tree line rather than precipitation.The findings suggest that multi-annual and seasonal NDVI can be a valuable indicator to monitor vegetation conditions at different scales and can provide complementary observations for national statistics on the ecological state of vegetation to monitor land affected by changing environmental conditions.This work is aiming at strengthening the insights into the driving factors of vegetation change and supporting monitoring changing land conditions to provide guidance for effective and efficient environmental management and sustainable development policy advice at the national scale.展开更多
Fault diagnosis is important for maintaining the safety and effectiveness of chemical process.Considering the multivariate,nonlinear,and dynamic characteristic of chemical process,many time-series-based data-driven fa...Fault diagnosis is important for maintaining the safety and effectiveness of chemical process.Considering the multivariate,nonlinear,and dynamic characteristic of chemical process,many time-series-based data-driven fault diagnosis methods have been developed in recent years.However,the existing methods have the problem of long-term dependency and are difficult to train due to the sequential way of training.To overcome these problems,a novel fault diagnosis method based on time-series and the hierarchical multihead self-attention(HMSAN)is proposed for chemical process.First,a sliding window strategy is adopted to construct the normalized time-series dataset.Second,the HMSAN is developed to extract the time-relevant features from the time-series process data.It improves the basic self-attention model in both width and depth.With the multihead structure,the HMSAN can pay attention to different aspects of the complicated chemical process and obtain the global dynamic features.However,the multiple heads in parallel lead to redundant information,which cannot improve the diagnosis performance.With the hierarchical structure,the redundant information is reduced and the deep local time-related features are further extracted.Besides,a novel many-to-one training strategy is introduced for HMSAN to simplify the training procedure and capture the long-term dependency.Finally,the effectiveness of the proposed method is demonstrated by two chemical cases.The experimental results show that the proposed method achieves a great performance on time-series industrial data and outperforms the state-of-the-art approaches.展开更多
Accurate mapping and timely monitoring of urban redevelopment are pivotal for urban studies and decisionmakers to foster sustainable urban development.Traditional mapping methods heavily depend on field surveys and su...Accurate mapping and timely monitoring of urban redevelopment are pivotal for urban studies and decisionmakers to foster sustainable urban development.Traditional mapping methods heavily depend on field surveys and subjective questionnaires,yielding less objective,reliable,and timely data.Recent advancements in Geographic Information Systems(GIS)and remote-sensing technologies have improved the identification and mapping of urban redevelopment through quantitative analysis using satellite-based observations.Nonetheless,challenges persist,particularly concerning accuracy and significant temporal delays.This study introduces a novel approach to modeling urban redevelopment,leveraging machine learning algorithms and remote-sensing data.This methodology can facilitate the accurate and timely identification of urban redevelopment activities.The study’s machine learning model can analyze time-series remote-sensing data to identify spatio-temporal and spectral patterns related to urban redevelopment.The model is thoroughly evaluated,and the results indicate that it can accurately capture the time-series patterns of urban redevelopment.This research’s findings are useful for evaluating urban demographic and economic changes,informing policymaking and urban planning,and contributing to sustainable urban development.The model can also serve as a foundation for future research on early-stage urban redevelopment detection and evaluation of the causes and impacts of urban redevelopment.展开更多
The frequent missing values in radar-derived time-series tracks of aerial targets(RTT-AT)lead to significant challenges in subsequent data-driven tasks.However,the majority of imputation research focuses on random mis...The frequent missing values in radar-derived time-series tracks of aerial targets(RTT-AT)lead to significant challenges in subsequent data-driven tasks.However,the majority of imputation research focuses on random missing(RM)that differs significantly from common missing patterns of RTT-AT.The method for solving the RM may experience performance degradation or failure when applied to RTT-AT imputation.Conventional autoregressive deep learning methods are prone to error accumulation and long-term dependency loss.In this paper,a non-autoregressive imputation model that addresses the issue of missing value imputation for two common missing patterns in RTT-AT is proposed.Our model consists of two probabilistic sparse diagonal masking self-attention(PSDMSA)units and a weight fusion unit.It learns missing values by combining the representations outputted by the two units,aiming to minimize the difference between the missing values and their actual values.The PSDMSA units effectively capture temporal dependencies and attribute correlations between time steps,improving imputation quality.The weight fusion unit automatically updates the weights of the output representations from the two units to obtain a more accurate final representation.The experimental results indicate that,despite varying missing rates in the two missing patterns,our model consistently outperforms other methods in imputation performance and exhibits a low frequency of deviations in estimates for specific missing entries.Compared to the state-of-the-art autoregressive deep learning imputation model Bidirectional Recurrent Imputation for Time Series(BRITS),our proposed model reduces mean absolute error(MAE)by 31%~50%.Additionally,the model attains a training speed that is 4 to 8 times faster when compared to both BRITS and a standard Transformer model when trained on the same dataset.Finally,the findings from the ablation experiments demonstrate that the PSDMSA,the weight fusion unit,cascade network design,and imputation loss enhance imputation performance and confirm the efficacy of our design.展开更多
High-quality,normalized differential vegetation index (NDVI) time-series data are fundamental for environmental remote sensing applications;however,their quality is often influenced by complicated factors such as atmo...High-quality,normalized differential vegetation index (NDVI) time-series data are fundamental for environmental remote sensing applications;however,their quality is often influenced by complicated factors such as atmospheric aerosols and cloud coverage. Hence,in the current study,a robust reconstruction method based on envelope detection and the Savitzky-Golay filter (ED-SG) was developed to reduce noise in the NDVI time-series. To verify the performance of ED-SG,simulation experiments were implemented and NDVI time-series samples were selected for different land cover types derived from MOD09GQ,Sentinel-2 and Landsat 8 OLI of Yangtze River Basin,between December 2018 and December 2019. The experimental results yielded an agreement coefficient and variance of 0.9599 and 0.0006,respectively on simulated time-series,Additionally,the smoothness metrics of evergreen broadleaf forests,evergreen needleleaf forests,deciduous broadleaf forests,herbaceous,and croplands were 0.0019,0.0017,0.0012,0.0012,and 0.0013,respectively. Ultimately,the reconstructed time-series metrics showed significant improvements in robustness and smoothness over conventional methods. Moreover,the simplistic mechanisms of the ED-SG model enabled it to run effectively in the Google Earth Engine over the NDVI time-series of the whole Yangtze River Basin.展开更多
To investigate the association between temperature and daily mortality in Shanghai from June 1, 2000 to December 31, 2001. Methods Time-series approach was used to estimate the effect of temperature on daily tota...To investigate the association between temperature and daily mortality in Shanghai from June 1, 2000 to December 31, 2001. Methods Time-series approach was used to estimate the effect of temperature on daily total and cause-specific mortality. We fitted generalized additive Poisson regression using non-parametric smooth functions to control for long-term time trend, season and other variables. We also controlled for day of the week. Results A gently sloping V-like relationship between total mortality and temperature was found, with an optimum temperature (e.g. temperature with lowest mortality risk) value of 26.7癈 in Shanghai. For temperatures above the optimum value, total mortality increased by 0.73% for each degree Celsius increase; while for temperature below the optimum value, total mortality decreased by 1.21% for each degree Celsius increase. Conclusions Our findings indicate that temperature has an effect on daily mortality in Shanghai, and the time-series approach is a useful tool for studying the temperature-mortality association.展开更多
In the past 30 years,the small baseline subset(SBAS)InSAR time-series technique has emerged as an essential tool for measuring slow surface displacement and estimating geophysical parameters.Because of its ability to ...In the past 30 years,the small baseline subset(SBAS)InSAR time-series technique has emerged as an essential tool for measuring slow surface displacement and estimating geophysical parameters.Because of its ability to monitor large-scale deformation with millimeter accuracy,the SBAS method has been widely used in various geodetic fields,such as ground subsidence,landslides,and seismic activity.The obtained long-term time-series cumulative deformation is vital for studying the deformation mecha-nism.This article reviews the algorithms,applications,and challenges of the SBAS method.First,we recall the fundamental principle and analyze the shortcomings of the traditional SBAS algorithm,which provides a basic framework for the following improved time series methods.Second,we classify the current improved SBAS techniques from different perspectives:solving the ill-posed equation,increasing the density of high-coherence points,improving the accuracy of monitoring deformation and measuring the multi-dimensional deformation.Third,we summarize the application of the SBAS method in monitoring ground subsidence,permafrost degradation,glacier movement,volcanic activity,landslides,and seismic activity.Finally,we discuss the difficulties faced by the SBAS method and explore its future development direction.展开更多
By employing the unique phenological feature of winter wheat extracted from peak before winter (PBW) and the advantages of moderate resolution imaging spectroradiometer (MODIS) data with high temporal resolution a...By employing the unique phenological feature of winter wheat extracted from peak before winter (PBW) and the advantages of moderate resolution imaging spectroradiometer (MODIS) data with high temporal resolution and intermediate spatial resolution, a remote sensing-based model for mapping winter wheat on the North China Plain was built through integration with Landsat images and land-use data. First, a phenological window, PBW was drawn from time-series MODIS data. Next, feature extraction was performed for the PBW to reduce feature dimension and enhance its information. Finally, a regression model was built to model the relationship of the phenological feature and the sample data. The amount of information of the PBW was evaluated and compared with that of the main peak (MP). The relative precision of the mapping reached up to 92% in comparison to the Landsat sample data, and ranged between 87 and 96% in comparison to the statistical data. These results were sufficient to satisfy the accuracy requirements for winter wheat mapping at a large scale. Moreover, the proposed method has the ability to obtain the distribution information for winter wheat in an earlier period than previous studies. This study could throw light on the monitoring of winter wheat in China by using unique phenological feature of winter wheat.展开更多
Clustering is used to gain an intuition of the struc tures in the data.Most of the current clustering algorithms pro duce a clustering structure even on data that do not possess such structure.In these cases,the algor...Clustering is used to gain an intuition of the struc tures in the data.Most of the current clustering algorithms pro duce a clustering structure even on data that do not possess such structure.In these cases,the algorithms force a structure in the data instead of discovering one.To avoid false structures in the relations of data,a novel clusterability assessment method called density-based clusterability measure is proposed in this paper.I measures the prominence of clustering structure in the data to evaluate whether a cluster analysis could produce a meaningfu insight to the relationships in the data.This is especially useful in time-series data since visualizing the structure in time-series data is hard.The performance of the clusterability measure is evalu ated against several synthetic data sets and time-series data sets which illustrate that the density-based clusterability measure can successfully indicate clustering structure of time-series data.展开更多
文摘Environmental changes are significantly modifying terrestrial vegetation dynamics,with serious consequences on Earth system functioning and provision of ecosystem services.Land conditions are an essential element underpinning global sustainability frameworks,such as the Sustainable Development Goals(SDGs),requiring effective solutions to assess the impacts of changing land conditions induced by various driving forces.At the global scale,long-term increase of vegetation greening has been widely reported notably in seasonally snow-covered ecosystems as a response to warming climate.However,greening trends at the national scale have received less attention,although countries like Switzerland are prone to important changing climate conditions.Hereby,we used a 35-year satellite-derived annual and seasonal time-series of Normalized Difference Vegetation Index(NDVI)to assess vegetation greenness evolution at different spatial and temporal scales across Switzerland and related them to temperature,precipitation,and land cover to investigate possible responses of changing climatic conditions.Results indicate that there is a statistically significant greening trend at the national scale with an NDVI mean increasing slope of 0.6%/year for the 61%significant pixels across Switzerland.In particular,the seasonal mean NDVI shows an important break for winter,autumn and spring seasons starting from 2010,potentially indicating a critical point of changing land conditions.At biogeographical scale,we observed an apparent clustering(Jura-Plateau;Northern-Southern Alps;Eastern-Western Alps)related to landscape characteristics,while forested land cover classes are more responsive to NDVI changes.Finally,the NDVI values are mostly a function of temperature at elevations below the tree line rather than precipitation.The findings suggest that multi-annual and seasonal NDVI can be a valuable indicator to monitor vegetation conditions at different scales and can provide complementary observations for national statistics on the ecological state of vegetation to monitor land affected by changing environmental conditions.This work is aiming at strengthening the insights into the driving factors of vegetation change and supporting monitoring changing land conditions to provide guidance for effective and efficient environmental management and sustainable development policy advice at the national scale.
基金supported by the National Natural Science Foundation of China(62073140,62073141)the Shanghai Rising-Star Program(21QA1401800).
文摘Fault diagnosis is important for maintaining the safety and effectiveness of chemical process.Considering the multivariate,nonlinear,and dynamic characteristic of chemical process,many time-series-based data-driven fault diagnosis methods have been developed in recent years.However,the existing methods have the problem of long-term dependency and are difficult to train due to the sequential way of training.To overcome these problems,a novel fault diagnosis method based on time-series and the hierarchical multihead self-attention(HMSAN)is proposed for chemical process.First,a sliding window strategy is adopted to construct the normalized time-series dataset.Second,the HMSAN is developed to extract the time-relevant features from the time-series process data.It improves the basic self-attention model in both width and depth.With the multihead structure,the HMSAN can pay attention to different aspects of the complicated chemical process and obtain the global dynamic features.However,the multiple heads in parallel lead to redundant information,which cannot improve the diagnosis performance.With the hierarchical structure,the redundant information is reduced and the deep local time-related features are further extracted.Besides,a novel many-to-one training strategy is introduced for HMSAN to simplify the training procedure and capture the long-term dependency.Finally,the effectiveness of the proposed method is demonstrated by two chemical cases.The experimental results show that the proposed method achieves a great performance on time-series industrial data and outperforms the state-of-the-art approaches.
文摘Accurate mapping and timely monitoring of urban redevelopment are pivotal for urban studies and decisionmakers to foster sustainable urban development.Traditional mapping methods heavily depend on field surveys and subjective questionnaires,yielding less objective,reliable,and timely data.Recent advancements in Geographic Information Systems(GIS)and remote-sensing technologies have improved the identification and mapping of urban redevelopment through quantitative analysis using satellite-based observations.Nonetheless,challenges persist,particularly concerning accuracy and significant temporal delays.This study introduces a novel approach to modeling urban redevelopment,leveraging machine learning algorithms and remote-sensing data.This methodology can facilitate the accurate and timely identification of urban redevelopment activities.The study’s machine learning model can analyze time-series remote-sensing data to identify spatio-temporal and spectral patterns related to urban redevelopment.The model is thoroughly evaluated,and the results indicate that it can accurately capture the time-series patterns of urban redevelopment.This research’s findings are useful for evaluating urban demographic and economic changes,informing policymaking and urban planning,and contributing to sustainable urban development.The model can also serve as a foundation for future research on early-stage urban redevelopment detection and evaluation of the causes and impacts of urban redevelopment.
基金supported by Graduate Funded Project(No.JY2022A017).
文摘The frequent missing values in radar-derived time-series tracks of aerial targets(RTT-AT)lead to significant challenges in subsequent data-driven tasks.However,the majority of imputation research focuses on random missing(RM)that differs significantly from common missing patterns of RTT-AT.The method for solving the RM may experience performance degradation or failure when applied to RTT-AT imputation.Conventional autoregressive deep learning methods are prone to error accumulation and long-term dependency loss.In this paper,a non-autoregressive imputation model that addresses the issue of missing value imputation for two common missing patterns in RTT-AT is proposed.Our model consists of two probabilistic sparse diagonal masking self-attention(PSDMSA)units and a weight fusion unit.It learns missing values by combining the representations outputted by the two units,aiming to minimize the difference between the missing values and their actual values.The PSDMSA units effectively capture temporal dependencies and attribute correlations between time steps,improving imputation quality.The weight fusion unit automatically updates the weights of the output representations from the two units to obtain a more accurate final representation.The experimental results indicate that,despite varying missing rates in the two missing patterns,our model consistently outperforms other methods in imputation performance and exhibits a low frequency of deviations in estimates for specific missing entries.Compared to the state-of-the-art autoregressive deep learning imputation model Bidirectional Recurrent Imputation for Time Series(BRITS),our proposed model reduces mean absolute error(MAE)by 31%~50%.Additionally,the model attains a training speed that is 4 to 8 times faster when compared to both BRITS and a standard Transformer model when trained on the same dataset.Finally,the findings from the ablation experiments demonstrate that the PSDMSA,the weight fusion unit,cascade network design,and imputation loss enhance imputation performance and confirm the efficacy of our design.
基金supported by the National Key Research and Development Program of China (grant number 2017YFC1500501).
文摘High-quality,normalized differential vegetation index (NDVI) time-series data are fundamental for environmental remote sensing applications;however,their quality is often influenced by complicated factors such as atmospheric aerosols and cloud coverage. Hence,in the current study,a robust reconstruction method based on envelope detection and the Savitzky-Golay filter (ED-SG) was developed to reduce noise in the NDVI time-series. To verify the performance of ED-SG,simulation experiments were implemented and NDVI time-series samples were selected for different land cover types derived from MOD09GQ,Sentinel-2 and Landsat 8 OLI of Yangtze River Basin,between December 2018 and December 2019. The experimental results yielded an agreement coefficient and variance of 0.9599 and 0.0006,respectively on simulated time-series,Additionally,the smoothness metrics of evergreen broadleaf forests,evergreen needleleaf forests,deciduous broadleaf forests,herbaceous,and croplands were 0.0019,0.0017,0.0012,0.0012,and 0.0013,respectively. Ultimately,the reconstructed time-series metrics showed significant improvements in robustness and smoothness over conventional methods. Moreover,the simplistic mechanisms of the ED-SG model enabled it to run effectively in the Google Earth Engine over the NDVI time-series of the whole Yangtze River Basin.
文摘To investigate the association between temperature and daily mortality in Shanghai from June 1, 2000 to December 31, 2001. Methods Time-series approach was used to estimate the effect of temperature on daily total and cause-specific mortality. We fitted generalized additive Poisson regression using non-parametric smooth functions to control for long-term time trend, season and other variables. We also controlled for day of the week. Results A gently sloping V-like relationship between total mortality and temperature was found, with an optimum temperature (e.g. temperature with lowest mortality risk) value of 26.7癈 in Shanghai. For temperatures above the optimum value, total mortality increased by 0.73% for each degree Celsius increase; while for temperature below the optimum value, total mortality decreased by 1.21% for each degree Celsius increase. Conclusions Our findings indicate that temperature has an effect on daily mortality in Shanghai, and the time-series approach is a useful tool for studying the temperature-mortality association.
基金This work was funded by the National Key R&D Program of China(2019YFC1509205)the National Natural Science Foundation of China(Nos.42174023 and 41804015)+1 种基金the Postgraduate Scientific Research Innovation Project of Hunan Province(150110074)the Postgraduate Scientific Research Innovation Project of Central South University(212191010).
文摘In the past 30 years,the small baseline subset(SBAS)InSAR time-series technique has emerged as an essential tool for measuring slow surface displacement and estimating geophysical parameters.Because of its ability to monitor large-scale deformation with millimeter accuracy,the SBAS method has been widely used in various geodetic fields,such as ground subsidence,landslides,and seismic activity.The obtained long-term time-series cumulative deformation is vital for studying the deformation mecha-nism.This article reviews the algorithms,applications,and challenges of the SBAS method.First,we recall the fundamental principle and analyze the shortcomings of the traditional SBAS algorithm,which provides a basic framework for the following improved time series methods.Second,we classify the current improved SBAS techniques from different perspectives:solving the ill-posed equation,increasing the density of high-coherence points,improving the accuracy of monitoring deformation and measuring the multi-dimensional deformation.Third,we summarize the application of the SBAS method in monitoring ground subsidence,permafrost degradation,glacier movement,volcanic activity,landslides,and seismic activity.Finally,we discuss the difficulties faced by the SBAS method and explore its future development direction.
基金supported by the open research fund of the Key Laboratory of Agri-informatics,Ministry of Agriculture and the fund of Outstanding Agricultural Researcher,Ministry of Agriculture,China
文摘By employing the unique phenological feature of winter wheat extracted from peak before winter (PBW) and the advantages of moderate resolution imaging spectroradiometer (MODIS) data with high temporal resolution and intermediate spatial resolution, a remote sensing-based model for mapping winter wheat on the North China Plain was built through integration with Landsat images and land-use data. First, a phenological window, PBW was drawn from time-series MODIS data. Next, feature extraction was performed for the PBW to reduce feature dimension and enhance its information. Finally, a regression model was built to model the relationship of the phenological feature and the sample data. The amount of information of the PBW was evaluated and compared with that of the main peak (MP). The relative precision of the mapping reached up to 92% in comparison to the Landsat sample data, and ranged between 87 and 96% in comparison to the statistical data. These results were sufficient to satisfy the accuracy requirements for winter wheat mapping at a large scale. Moreover, the proposed method has the ability to obtain the distribution information for winter wheat in an earlier period than previous studies. This study could throw light on the monitoring of winter wheat in China by using unique phenological feature of winter wheat.
文摘Clustering is used to gain an intuition of the struc tures in the data.Most of the current clustering algorithms pro duce a clustering structure even on data that do not possess such structure.In these cases,the algorithms force a structure in the data instead of discovering one.To avoid false structures in the relations of data,a novel clusterability assessment method called density-based clusterability measure is proposed in this paper.I measures the prominence of clustering structure in the data to evaluate whether a cluster analysis could produce a meaningfu insight to the relationships in the data.This is especially useful in time-series data since visualizing the structure in time-series data is hard.The performance of the clusterability measure is evalu ated against several synthetic data sets and time-series data sets which illustrate that the density-based clusterability measure can successfully indicate clustering structure of time-series data.