期刊文献+
共找到4,730篇文章
< 1 2 237 >
每页显示 20 50 100
Change in observed long-term greening across Switzerlandevidence from a three decades NDVI time-series and its relationship with climate and land cover factors 被引量:2
1
作者 Claire Obuchowicz Charlotte Poussin Gregory Giuliani 《Big Earth Data》 EI CSCD 2024年第1期1-32,共32页
Environmental changes are significantly modifying terrestrial vegetation dynamics,with serious consequences on Earth system functioning and provision of ecosystem services.Land conditions are an essential element unde... Environmental changes are significantly modifying terrestrial vegetation dynamics,with serious consequences on Earth system functioning and provision of ecosystem services.Land conditions are an essential element underpinning global sustainability frameworks,such as the Sustainable Development Goals(SDGs),requiring effective solutions to assess the impacts of changing land conditions induced by various driving forces.At the global scale,long-term increase of vegetation greening has been widely reported notably in seasonally snow-covered ecosystems as a response to warming climate.However,greening trends at the national scale have received less attention,although countries like Switzerland are prone to important changing climate conditions.Hereby,we used a 35-year satellite-derived annual and seasonal time-series of Normalized Difference Vegetation Index(NDVI)to assess vegetation greenness evolution at different spatial and temporal scales across Switzerland and related them to temperature,precipitation,and land cover to investigate possible responses of changing climatic conditions.Results indicate that there is a statistically significant greening trend at the national scale with an NDVI mean increasing slope of 0.6%/year for the 61%significant pixels across Switzerland.In particular,the seasonal mean NDVI shows an important break for winter,autumn and spring seasons starting from 2010,potentially indicating a critical point of changing land conditions.At biogeographical scale,we observed an apparent clustering(Jura-Plateau;Northern-Southern Alps;Eastern-Western Alps)related to landscape characteristics,while forested land cover classes are more responsive to NDVI changes.Finally,the NDVI values are mostly a function of temperature at elevations below the tree line rather than precipitation.The findings suggest that multi-annual and seasonal NDVI can be a valuable indicator to monitor vegetation conditions at different scales and can provide complementary observations for national statistics on the ecological state of vegetation to monitor land affected by changing environmental conditions.This work is aiming at strengthening the insights into the driving factors of vegetation change and supporting monitoring changing land conditions to provide guidance for effective and efficient environmental management and sustainable development policy advice at the national scale. 展开更多
关键词 LANDSAT CLIMATE land cover ndvi ANOMALY
原文传递
Hierarchical multihead self-attention for time-series-based fault diagnosis
2
作者 Chengtian Wang Hongbo Shi +1 位作者 Bing Song Yang Tao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第6期104-117,共14页
Fault diagnosis is important for maintaining the safety and effectiveness of chemical process.Considering the multivariate,nonlinear,and dynamic characteristic of chemical process,many time-series-based data-driven fa... Fault diagnosis is important for maintaining the safety and effectiveness of chemical process.Considering the multivariate,nonlinear,and dynamic characteristic of chemical process,many time-series-based data-driven fault diagnosis methods have been developed in recent years.However,the existing methods have the problem of long-term dependency and are difficult to train due to the sequential way of training.To overcome these problems,a novel fault diagnosis method based on time-series and the hierarchical multihead self-attention(HMSAN)is proposed for chemical process.First,a sliding window strategy is adopted to construct the normalized time-series dataset.Second,the HMSAN is developed to extract the time-relevant features from the time-series process data.It improves the basic self-attention model in both width and depth.With the multihead structure,the HMSAN can pay attention to different aspects of the complicated chemical process and obtain the global dynamic features.However,the multiple heads in parallel lead to redundant information,which cannot improve the diagnosis performance.With the hierarchical structure,the redundant information is reduced and the deep local time-related features are further extracted.Besides,a novel many-to-one training strategy is introduced for HMSAN to simplify the training procedure and capture the long-term dependency.Finally,the effectiveness of the proposed method is demonstrated by two chemical cases.The experimental results show that the proposed method achieves a great performance on time-series industrial data and outperforms the state-of-the-art approaches. 展开更多
关键词 Self-attention mechanism Deep learning Chemical process time-series Fault diagnosis
下载PDF
Modeling urban redevelopment:A novel approach using time-series remote sensing data and machine learning
3
作者 Li Lin Liping Di +6 位作者 Chen Zhang Liying Guo Haoteng Zhao Didarul Islam Hui Li Ziao Liu Gavin Middleton 《Geography and Sustainability》 CSCD 2024年第2期211-219,共9页
Accurate mapping and timely monitoring of urban redevelopment are pivotal for urban studies and decisionmakers to foster sustainable urban development.Traditional mapping methods heavily depend on field surveys and su... Accurate mapping and timely monitoring of urban redevelopment are pivotal for urban studies and decisionmakers to foster sustainable urban development.Traditional mapping methods heavily depend on field surveys and subjective questionnaires,yielding less objective,reliable,and timely data.Recent advancements in Geographic Information Systems(GIS)and remote-sensing technologies have improved the identification and mapping of urban redevelopment through quantitative analysis using satellite-based observations.Nonetheless,challenges persist,particularly concerning accuracy and significant temporal delays.This study introduces a novel approach to modeling urban redevelopment,leveraging machine learning algorithms and remote-sensing data.This methodology can facilitate the accurate and timely identification of urban redevelopment activities.The study’s machine learning model can analyze time-series remote-sensing data to identify spatio-temporal and spectral patterns related to urban redevelopment.The model is thoroughly evaluated,and the results indicate that it can accurately capture the time-series patterns of urban redevelopment.This research’s findings are useful for evaluating urban demographic and economic changes,informing policymaking and urban planning,and contributing to sustainable urban development.The model can also serve as a foundation for future research on early-stage urban redevelopment detection and evaluation of the causes and impacts of urban redevelopment. 展开更多
关键词 Urban redevelopment Urban sustainability Remote sensing time-series analysis Machine learning
下载PDF
Missing Value Imputation for Radar-Derived Time-Series Tracks of Aerial Targets Based on Improved Self-Attention-Based Network
4
作者 Zihao Song Yan Zhou +2 位作者 Wei Cheng Futai Liang Chenhao Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第3期3349-3376,共28页
The frequent missing values in radar-derived time-series tracks of aerial targets(RTT-AT)lead to significant challenges in subsequent data-driven tasks.However,the majority of imputation research focuses on random mis... The frequent missing values in radar-derived time-series tracks of aerial targets(RTT-AT)lead to significant challenges in subsequent data-driven tasks.However,the majority of imputation research focuses on random missing(RM)that differs significantly from common missing patterns of RTT-AT.The method for solving the RM may experience performance degradation or failure when applied to RTT-AT imputation.Conventional autoregressive deep learning methods are prone to error accumulation and long-term dependency loss.In this paper,a non-autoregressive imputation model that addresses the issue of missing value imputation for two common missing patterns in RTT-AT is proposed.Our model consists of two probabilistic sparse diagonal masking self-attention(PSDMSA)units and a weight fusion unit.It learns missing values by combining the representations outputted by the two units,aiming to minimize the difference between the missing values and their actual values.The PSDMSA units effectively capture temporal dependencies and attribute correlations between time steps,improving imputation quality.The weight fusion unit automatically updates the weights of the output representations from the two units to obtain a more accurate final representation.The experimental results indicate that,despite varying missing rates in the two missing patterns,our model consistently outperforms other methods in imputation performance and exhibits a low frequency of deviations in estimates for specific missing entries.Compared to the state-of-the-art autoregressive deep learning imputation model Bidirectional Recurrent Imputation for Time Series(BRITS),our proposed model reduces mean absolute error(MAE)by 31%~50%.Additionally,the model attains a training speed that is 4 to 8 times faster when compared to both BRITS and a standard Transformer model when trained on the same dataset.Finally,the findings from the ablation experiments demonstrate that the PSDMSA,the weight fusion unit,cascade network design,and imputation loss enhance imputation performance and confirm the efficacy of our design. 展开更多
关键词 Missing value imputation time-series tracks probabilistic sparsity diagonal masking self-attention weight fusion
下载PDF
A method for reconstructing NDVI time-series based on envelope detection and the Savitzky-Golay filter
5
作者 Xinkai Liu Lingyun Ji +1 位作者 Chen Zhang Yanhui Liu 《International Journal of Digital Earth》 SCIE EI 2022年第1期553-584,共32页
High-quality,normalized differential vegetation index (NDVI) time-series data are fundamental for environmental remote sensing applications;however,their quality is often influenced by complicated factors such as atmo... High-quality,normalized differential vegetation index (NDVI) time-series data are fundamental for environmental remote sensing applications;however,their quality is often influenced by complicated factors such as atmospheric aerosols and cloud coverage. Hence,in the current study,a robust reconstruction method based on envelope detection and the Savitzky-Golay filter (ED-SG) was developed to reduce noise in the NDVI time-series. To verify the performance of ED-SG,simulation experiments were implemented and NDVI time-series samples were selected for different land cover types derived from MOD09GQ,Sentinel-2 and Landsat 8 OLI of Yangtze River Basin,between December 2018 and December 2019. The experimental results yielded an agreement coefficient and variance of 0.9599 and 0.0006,respectively on simulated time-series,Additionally,the smoothness metrics of evergreen broadleaf forests,evergreen needleleaf forests,deciduous broadleaf forests,herbaceous,and croplands were 0.0019,0.0017,0.0012,0.0012,and 0.0013,respectively. Ultimately,the reconstructed time-series metrics showed significant improvements in robustness and smoothness over conventional methods. Moreover,the simplistic mechanisms of the ED-SG model enabled it to run effectively in the Google Earth Engine over the NDVI time-series of the whole Yangtze River Basin. 展开更多
关键词 time-series reconstruction envelope detection Savitzky-Golay filter Google Earth Engine
原文传递
2000-2020年陕西省植被NDVI时空变化及气候因子探测 被引量:4
6
作者 李霞 王孝康 +3 位作者 刘秀花 张乐艺 金相皓 陈永昊 《水土保持研究》 CSCD 北大核心 2024年第2期443-453,共11页
[目的]揭示陕西省不同生态系统植被时空变化,厘清不同气候因子及相互作用对植被变化的影响机制,为区域生态环境保护提供理论依据。[方法]基于MODIS NDVI及年均高温、年均低温、年均温、年总降水数据,采用Theil-Sen Median趋势、偏相关... [目的]揭示陕西省不同生态系统植被时空变化,厘清不同气候因子及相互作用对植被变化的影响机制,为区域生态环境保护提供理论依据。[方法]基于MODIS NDVI及年均高温、年均低温、年均温、年总降水数据,采用Theil-Sen Median趋势、偏相关、地理探测器等方法,分析了2000—2020年各地貌分区植被NDVI时空变化特征,结合变量分离探究了植被NDVI变化与降水、气温的内部关联和响应机制。[结果]2000—2020年陕西植被NDVI波动增加,速率为5.9%/10 a,速率大小为陕北>关中>陕南;全省多年植被NDVI值为0.71,南高北低;植被NDVI显著改善区域占比67%,分区占比为陕北>陕南>关中。2000—2020年陕西气候因子随时间波动变化,速率大小为陕南>关中>陕北,空间上呈现年均高温降低、年均低温上升、年均温降低、降水增加。2000—2020年陕西及各分区植被NDVI与年均高温整体呈负相关,与年均低温、年均温、年总降水量呈正相关;全省及陕北年总降水贡献最大,关中和陕南年均高温贡献最大;年均高温与年总降水交互主导全省、陕北及陕南植被NDVI变化,年均温与年总降水的交互主导关中植被NDVI变化。[结论]研究期陕西及各分区植被整体变好,各分区植被对气候的响应关系、各因子的贡献及其相互作用不同,降水和年均高温、年均温的交互显著影响植被NDVI变化。 展开更多
关键词 植被ndvi 时空变化 地理探测器 陕西省
下载PDF
中国沿海地区植被NDVI时空变化及驱动力分析 被引量:1
7
作者 李霞 陈永昊 +2 位作者 陈喆 张国壮 唐梦雅 《生态环境学报》 CSCD 北大核心 2024年第2期180-191,共12页
研究植被变化对区域生态修复具有重要意义。以中国沿海地区为例,基于归一化植被指数(NDVI)和降水、夜间灯光等自然和人为因子数据,运用Theil-Sen Median趋势分析+Mann-Kendall检验、最优参数地理探测器(OPGD)、相关分析和Hurst指数,多... 研究植被变化对区域生态修复具有重要意义。以中国沿海地区为例,基于归一化植被指数(NDVI)和降水、夜间灯光等自然和人为因子数据,运用Theil-Sen Median趋势分析+Mann-Kendall检验、最优参数地理探测器(OPGD)、相关分析和Hurst指数,多时空尺度探讨了中国沿海地区植被NDVI时空变化规律及其驱动力。结果表明:1)2001-2020年研究区植被状况较好,NDVI多年均值为0.762,具体到各分区,东北沿海的NDVI均值最高,其次是华南沿海,华东沿海和华北沿海;全区NDVI逐年变化率为0.019/10 a(P<0.01),不同分区的上升趋势从大到小为华南沿海、东北沿海、华北沿海和华东沿海,区域内植被状况不断改善,退耕还林还草和沿海防护林等生态工程效益不断显现;2)夜间灯光指数在全区各个因子中的解释力最大(q值为0.354),人为因素对NDVI的解释力明显大于自然因素,其对植被恢复产生了积极影响,并且随时间推移逐渐增强;3)两因子结合后的解释力大于单因子,表现为双因子增强和非线性增强。在全区范围内,影响最大的一对交互作用为土壤类型∩夜间灯光,其他分区则为日照时数∩夜间灯光(东北沿海地区),土壤类型∩夜间灯光(华北沿海和华东沿海地区),人口密度∩夜间灯光(华南沿海地区),自然因素和人类活动因素作用后影响力有了显著提升,但人类活动因素仍占据主导地位;4)Hurst指数均值为0.463,未来一段时间内,研究区内植被变化有66.3%的地区表现出一定的反持续性。研究结果有利于为中国沿海地区生态保护和高质量发展提供科学支撑。 展开更多
关键词 ndvi 时空变化 驱动力 最优参数地理探测器 相关分析 中国沿海地区
下载PDF
基于无人机多光谱NDVI值估测玉米产量
8
作者 张磊 姚梦瑶 +8 位作者 刘志刚 李娟 杨洋 蔡大润 陈果 李波 李晓荣 陈勋基 翟云龙 《新疆农业科学》 CAS CSCD 北大核心 2024年第4期845-851,共7页
【目的】研究基于UAS-8无人机采集数据,运用归一化植被指数(Normalized Difference Vegetation Index)模型估测玉米产量,为大田无人机多光谱预测玉米产量提供理论依据。【方法】以新疆18份春播玉米为研究对象,获取开花期多光谱图像,经... 【目的】研究基于UAS-8无人机采集数据,运用归一化植被指数(Normalized Difference Vegetation Index)模型估测玉米产量,为大田无人机多光谱预测玉米产量提供理论依据。【方法】以新疆18份春播玉米为研究对象,获取开花期多光谱图像,经过辐射校正、大气校正、建立掩膜、提取NDVI图,计算植被覆盖率,得到区光谱反射率和归一化植被指数实际数值,将NDVI值与田间实测产量值进行模型拟合。【结果】幂函数Y=23411.46-10997.99/X(R^(2)=0.4886),二次函数为Y=39003.00-117963.03X+103130.25X 2(R^(2)=0.562),正反比函数(Inverse Proportional Function)为Y 2=2840.5 X/(1-X)(R^(2)=0.495),利用偏最小二乘回归(Partial Least Squares Regression),其线性函数Y=24458.22X-9620.55(R^(2)=0.521)。【结论】在数值0.5~0.8区间,NDVI与玉米产量具有较高的相关性,线性函数方程NDVI值可预测玉米的产量。 展开更多
关键词 玉米 产量 归一化植被指数(ndvi) 偏最小二乘回归(PLSR)
下载PDF
高寒气候区生长季NDVI与昼夜不对称增温的Copula分析
9
作者 李忠良 何光鑫 李勋 《大气科学学报》 CSCD 北大核心 2024年第3期407-424,共18页
利用1982—2016年的青海地区归一化植被指数和气象数据,基于马尔科夫链蒙特卡罗的Copula函数方法,深入探索昼夜增温不对称性与植被活动之间的复杂关系,揭示了昼夜增温和NDVI之间的联合概率分布及其季节性差异。研究结果表明,昼夜增温与N... 利用1982—2016年的青海地区归一化植被指数和气象数据,基于马尔科夫链蒙特卡罗的Copula函数方法,深入探索昼夜增温不对称性与植被活动之间的复杂关系,揭示了昼夜增温和NDVI之间的联合概率分布及其季节性差异。研究结果表明,昼夜增温与NDVI之间的关系在不同季节呈现显著差异。尤其在秋季,昼夜增温对NDVI的影响最为显著,其次是夏季和春季。通过Copula函数模型,发现昼夜增温与NDVI在特定温度区间内呈现正相关,表明适宜的温度条件下昼夜增温对植被生长具有促进作用。然而,当昼夜增温超过某一阈值时,其对NDVI的促进作用转变为抑制作用,从而限制了植被的生长。同时,还揭示了重现期与昼夜增温及NDVI之间的关系。在较低的重现期下,昼夜增温与NDVI的联合概率较高,表明在这些条件下,植被生长良好的情况出现的频率较高。反之,较高的重现期对应于昼夜增温与NDVI较低的联合概率,表明植被生长受到抑制。本研究通过Copula函数提供了一个全新的视角来理解昼夜增温与植被动态之间的相互作用,强调了气温变化对植被生长影响的复杂性。 展开更多
关键词 昼夜增温 归一化植被指数(ndvi) 非对称性增温 COPULA 重现期
下载PDF
2000—2021年渭河流域NDVI变化及其影响因素
10
作者 封建民 刘宇峰 +1 位作者 郭玲霞 文琦 《湖北农业科学》 2024年第5期22-29,共8页
渭河流域是黄河中游重要的生态涵养地,同时也是黄土高原水土流失的典型区域,监测该地区植被生长变化趋势,并分析其与气候变化和人类活动的关系,对科学评估区域生态建设成效、黄土高原植被恢复和生态修复具有重要意义。基于2000—2021年... 渭河流域是黄河中游重要的生态涵养地,同时也是黄土高原水土流失的典型区域,监测该地区植被生长变化趋势,并分析其与气候变化和人类活动的关系,对科学评估区域生态建设成效、黄土高原植被恢复和生态修复具有重要意义。基于2000—2021年归一化植被指数(NDVI)、气温、降水量、人口密度、土地利用数据,分析了渭河流域NDVI的时空变化特征,探究了气候变化和人类活动对NDVI变化趋势的影响。结果表明,2000—2021年,渭河流域植被生长季NDVI呈增加趋势,全区年平均增速为0.004。年际尺度上,NDVI与年平均降水量呈正相关关系,与年平均气温的相关性不显著;月尺度上,NDVI与4月和8月的气温、降水量均呈正相关关系,与7月气温呈弱的负相关关系。人口密度变化与NDVI变化趋势呈负相关,流域人口密度的减小有利于植被的恢复和改善。土地利用类型内部变化是植被NDVI变化的主要原因。NDVI显著减少区NDVI的减少趋势主要由关中平原耕地NDVI的减少引起,NDVI显著增加区NDVI的增加趋势主要由草地、林地以及黄土丘陵区、黄土残塬区耕地NDVI的增加引起。 展开更多
关键词 归一化植被指数(ndvi) 气候 人口密度 土地利用 渭河流域
下载PDF
四川省NDVI时空演化特征研究
11
作者 陈浩 董廷旭 +2 位作者 马丽 林孝先 李勇 《绵阳师范学院学报》 2024年第2期106-112,共7页
研究归一化植被指数(NDVI)时空演化特征可为区域生态环境保护和自然资源管理提供理论参考和技术支撑.基于2000—2019年四川省NDVI遥感数据,通过趋势分析法探讨研究区NDVI时空演变规律,结果表明,从时间尺度看,四川省NDVI总体呈增长趋势,N... 研究归一化植被指数(NDVI)时空演化特征可为区域生态环境保护和自然资源管理提供理论参考和技术支撑.基于2000—2019年四川省NDVI遥感数据,通过趋势分析法探讨研究区NDVI时空演变规律,结果表明,从时间尺度看,四川省NDVI总体呈增长趋势,NDVI绝对值高低与植物生长的物候时序相吻合,表现为夏季>秋季>春季>冬季;从空间尺度看,NDVI增加区域占研究区总面积的91.41%,其中,秋、冬两季是NDVI显著增长季节,其增长区域主要集中于青藏高原东缘地带.由于城镇化进程加快,龙门山和龙泉山所夹持的成都平原地带NDVI值总体呈下降趋势. 展开更多
关键词 ndvi时空演化 趋势分析 地貌单元 四川省
下载PDF
基于Sentinel-2A NDVI时间序列数据和随机森林方法的高山冷凉蔬菜识别
12
作者 马强 任元龙 +1 位作者 李浩 王晓卓 《现代信息科技》 2024年第19期164-167,174,共5页
该研究基于Sentinel-2A卫星的归一化差值植被指数(NDVI)时间序列数据,结合随机森林(RF)分类方法,对高山冷凉蔬菜种植区域进行精准识别与分类。以西吉县为研究区,利用2023年覆盖高山冷凉蔬菜全生育期的Sentinel-2A遥感数据,构建10 m高空... 该研究基于Sentinel-2A卫星的归一化差值植被指数(NDVI)时间序列数据,结合随机森林(RF)分类方法,对高山冷凉蔬菜种植区域进行精准识别与分类。以西吉县为研究区,利用2023年覆盖高山冷凉蔬菜全生育期的Sentinel-2A遥感数据,构建10 m高空间分辨率的NDVI时间序列数据,结合田间实测数据,使用RF分类方法对高山冷凉蔬菜进行识别分类。结果表明文章提出的方法在高山冷凉蔬菜种植区域识别中表现出了较高的精度和稳定性,总体精度达93.52%,Kappa系数为0.89。 展开更多
关键词 Sentinel-2A 归一化差值植被指数(ndvi) 随机森林(RF) 高山冷凉蔬菜识别
下载PDF
2000-2020年内蒙古NDVI时空动态及其对水热条件的响应 被引量:2
13
作者 皇彦 宋海清 +3 位作者 胡琦 吴昊 卢佳玥 李碧云 《水土保持研究》 CSCD 北大核心 2024年第4期197-204,213,共9页
[目的]了解植被生态现状,剖析植被变化影响因素,为区域生态环境治理和规划提供科学依据。[方法]基于MOD13A3 NDVI数据和气象数据,采用Sen趋势分析、M-K检验、Hurst指数、相关系数等方法研究了内蒙古地区NDVI时空变化及其对水热条件的响... [目的]了解植被生态现状,剖析植被变化影响因素,为区域生态环境治理和规划提供科学依据。[方法]基于MOD13A3 NDVI数据和气象数据,采用Sen趋势分析、M-K检验、Hurst指数、相关系数等方法研究了内蒙古地区NDVI时空变化及其对水热条件的响应。[结果]内蒙古NDVI显著增长(p<0.01),空间分布呈东高西低的特征,大部分地区NDVI以增加趋势为主,耕地增长率最大且呈增加趋势面积占比最大。研究期内NDVI变化相对稳定,林地的稳定性最好。未来内蒙古NDVI变化以反持续性为主,反持续性和持续性面积占比分别为76.51%,23.49%。NDVI与气温呈负相关的区域占78.25%,其中极显著和显著负相关的区域占19.92%;与降水、土壤湿度呈正相关的区域占93.16%,93.53%,其中极显著和显著正相关的区域分别占51.37%,55.85%。[结论]内蒙古地区植被生态整体趋于改善,未来植被生态可能退化,土壤湿度是影响内蒙古植被生长的主导因子。 展开更多
关键词 ndvi 时空变化 水热条件 内蒙古
下载PDF
Temperature and Daily Mortality in Shanghai:A Time-series Study 被引量:21
14
作者 HAI-DONGKAN JIANJIA BING-HENGCHEN 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2003年第2期133-139,共7页
To investigate the association between temperature and daily mortality in Shanghai from June 1, 2000 to December 31, 2001. Methods Time-series approach was used to estimate the effect of temperature on daily tota... To investigate the association between temperature and daily mortality in Shanghai from June 1, 2000 to December 31, 2001. Methods Time-series approach was used to estimate the effect of temperature on daily total and cause-specific mortality. We fitted generalized additive Poisson regression using non-parametric smooth functions to control for long-term time trend, season and other variables. We also controlled for day of the week. Results A gently sloping V-like relationship between total mortality and temperature was found, with an optimum temperature (e.g. temperature with lowest mortality risk) value of 26.7癈 in Shanghai. For temperatures above the optimum value, total mortality increased by 0.73% for each degree Celsius increase; while for temperature below the optimum value, total mortality decreased by 1.21% for each degree Celsius increase. Conclusions Our findings indicate that temperature has an effect on daily mortality in Shanghai, and the time-series approach is a useful tool for studying the temperature-mortality association. 展开更多
关键词 TEMPERATURE MORTALITY time-series
下载PDF
河套灌区农田植被物候和NDVI峰值对气候变化的响应 被引量:1
15
作者 安琪尔 包刚 +3 位作者 元志辉 温都日娜 张港栋 朝布嘎 《灌溉排水学报》 CAS CSCD 2024年第6期86-92,共7页
【目的】研究河套灌区植被物候参数和NDVI峰值时空变化特征及对气候变化的响应。【方法】利用2001—2021年MOD13Q1数据和双logistic四参数模型,识别了河套灌区植被SOS、EOS、LOS、POS、NDVI峰值时空变化特征及对气候变化的响应。【结果... 【目的】研究河套灌区植被物候参数和NDVI峰值时空变化特征及对气候变化的响应。【方法】利用2001—2021年MOD13Q1数据和双logistic四参数模型,识别了河套灌区植被SOS、EOS、LOS、POS、NDVI峰值时空变化特征及对气候变化的响应。【结果】河套灌区植被SOS一般从5月下旬到6月中旬开始,到9月中旬至10月上旬结束,LOS主要介于95~116 d,POS主要介于200~220 d,NDVI峰值主要介于0.5~0.7。植被物候变化趋势主要体现在SOS的推迟、LOS的缩短和NDVI峰值的增加。SOS的推迟导致LOS的缩短。而EOS和POS呈提前和推迟趋势的像元比较接近。河套灌区SOS、EOS、POS与气温均以负敏感为主,与降水量以正敏感为主。NDVI峰值与气温和降水量均呈正敏感。【结论】河套灌区物候参数和NDVI峰值的变化趋势具空间异质性,对不同气候因子的响应也有所差异。 展开更多
关键词 河套灌区 植被物候 ndvi峰值 气候变化
下载PDF
Review of the SBAS InSAR Time-series algorithms, applications, and challenges 被引量:13
16
作者 Shaowei Li Wenbin Xu Zhiwei Li 《Geodesy and Geodynamics》 CSCD 2022年第2期114-126,共13页
In the past 30 years,the small baseline subset(SBAS)InSAR time-series technique has emerged as an essential tool for measuring slow surface displacement and estimating geophysical parameters.Because of its ability to ... In the past 30 years,the small baseline subset(SBAS)InSAR time-series technique has emerged as an essential tool for measuring slow surface displacement and estimating geophysical parameters.Because of its ability to monitor large-scale deformation with millimeter accuracy,the SBAS method has been widely used in various geodetic fields,such as ground subsidence,landslides,and seismic activity.The obtained long-term time-series cumulative deformation is vital for studying the deformation mecha-nism.This article reviews the algorithms,applications,and challenges of the SBAS method.First,we recall the fundamental principle and analyze the shortcomings of the traditional SBAS algorithm,which provides a basic framework for the following improved time series methods.Second,we classify the current improved SBAS techniques from different perspectives:solving the ill-posed equation,increasing the density of high-coherence points,improving the accuracy of monitoring deformation and measuring the multi-dimensional deformation.Third,we summarize the application of the SBAS method in monitoring ground subsidence,permafrost degradation,glacier movement,volcanic activity,landslides,and seismic activity.Finally,we discuss the difficulties faced by the SBAS method and explore its future development direction. 展开更多
关键词 INSAR Small baseline subset time-series InSAR DEFORMATION
下载PDF
Mapping winter wheat using phenological feature of peak before winter on the North China Plain based on time-series MODIS data 被引量:17
17
作者 TAO Jian-bin WU Wen-bin +2 位作者 ZHOU Yong WANG Yu JIANG Yan 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第2期348-359,共12页
By employing the unique phenological feature of winter wheat extracted from peak before winter (PBW) and the advantages of moderate resolution imaging spectroradiometer (MODIS) data with high temporal resolution a... By employing the unique phenological feature of winter wheat extracted from peak before winter (PBW) and the advantages of moderate resolution imaging spectroradiometer (MODIS) data with high temporal resolution and intermediate spatial resolution, a remote sensing-based model for mapping winter wheat on the North China Plain was built through integration with Landsat images and land-use data. First, a phenological window, PBW was drawn from time-series MODIS data. Next, feature extraction was performed for the PBW to reduce feature dimension and enhance its information. Finally, a regression model was built to model the relationship of the phenological feature and the sample data. The amount of information of the PBW was evaluated and compared with that of the main peak (MP). The relative precision of the mapping reached up to 92% in comparison to the Landsat sample data, and ranged between 87 and 96% in comparison to the statistical data. These results were sufficient to satisfy the accuracy requirements for winter wheat mapping at a large scale. Moreover, the proposed method has the ability to obtain the distribution information for winter wheat in an earlier period than previous studies. This study could throw light on the monitoring of winter wheat in China by using unique phenological feature of winter wheat. 展开更多
关键词 time-series MODIS data phenological feature peak before wintering winter wheat mapping
下载PDF
Clustering Structure Analysis in Time-Series Data With Density-Based Clusterability Measure 被引量:6
18
作者 Juho Jokinen Tomi Raty Timo Lintonen 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2019年第6期1332-1343,共12页
Clustering is used to gain an intuition of the struc tures in the data.Most of the current clustering algorithms pro duce a clustering structure even on data that do not possess such structure.In these cases,the algor... Clustering is used to gain an intuition of the struc tures in the data.Most of the current clustering algorithms pro duce a clustering structure even on data that do not possess such structure.In these cases,the algorithms force a structure in the data instead of discovering one.To avoid false structures in the relations of data,a novel clusterability assessment method called density-based clusterability measure is proposed in this paper.I measures the prominence of clustering structure in the data to evaluate whether a cluster analysis could produce a meaningfu insight to the relationships in the data.This is especially useful in time-series data since visualizing the structure in time-series data is hard.The performance of the clusterability measure is evalu ated against several synthetic data sets and time-series data sets which illustrate that the density-based clusterability measure can successfully indicate clustering structure of time-series data. 展开更多
关键词 CLUSTERING EXPLORATORY data analysis time-series UNSUPERVISED LEARNING
下载PDF
荒漠-绿洲过渡带NDVI演变及影响因子相关性分析 被引量:1
19
作者 赵琪 王琳 +3 位作者 潘世兵 熊伟 左芸 达朝吉 《中国水利水电科学研究院学报(中英文)》 北大核心 2024年第3期239-249,共11页
荒漠-绿洲过渡带是绿洲与荒漠相互转化过程中表现最活跃的地区,具有防止荒漠扩张、维持绿洲生态安全等重要的生态功能。本研究以民勤县为研究区域,根据绿洲外围归一化差异植被指数(Normalized difference vegetation index,NDVI)的变化... 荒漠-绿洲过渡带是绿洲与荒漠相互转化过程中表现最活跃的地区,具有防止荒漠扩张、维持绿洲生态安全等重要的生态功能。本研究以民勤县为研究区域,根据绿洲外围归一化差异植被指数(Normalized difference vegetation index,NDVI)的变化规律,确定民勤荒漠-绿洲过渡带的范围;利用2000—2020年内最大NDVI数据及降水、温度、日照时数、土壤水分影响因子,在像元尺度采用偏相关及多元相关分析方法,研究过渡带NDVI变化趋势及影响因子相关性分析。结果表明,绿洲边界外5000 m范围为民勤荒漠-绿洲过渡带范围,其中绿洲外0~300 m为过渡带核心区,300~2000 m为过渡带交错区,2000~5000 m范围为过渡带缓冲区。自2000年以来,过渡带区域NDVI整体呈增加趋势,其中,明显改善和稳定不变的面积占比较高,分别为47.8%和42.2%,其他占比较小,严重退化区域主要在靠近绿洲的过渡带核心区。降水增加对过渡带南部地带性植被的改善起主导作用,温度的上升对过渡带东部及西北部NDVI改善的促进作用更明显,日照时数的增加对过渡带西部及东南部NDVI改善的促进作用更大,土壤水分的增加对过渡带整体NDVI的改善均具有促进作用。土壤水分和降水是促进过渡带NDVI改善的主要因子。 展开更多
关键词 荒漠-绿洲过渡带 ndvi 影响因子 空间相关性
下载PDF
1982-2015年黄河中游NDVI时空变化及驱动力分析 被引量:2
20
作者 李自闯 董国涛 姚楠 《水土保持研究》 CSCD 北大核心 2024年第2期202-210,共9页
[目的]探究黄河中游NDVI时空变化,阐明自然和人为因素对NDVI变化的影响和驱动力,并为黄河中游生态保护与发展提供科学依据。[方法]基于AVHRR GIMMS NDVI数据集,采用线性回归分析、Mann-Kendall检验、地理探测器模型,分析了1982—2015年... [目的]探究黄河中游NDVI时空变化,阐明自然和人为因素对NDVI变化的影响和驱动力,并为黄河中游生态保护与发展提供科学依据。[方法]基于AVHRR GIMMS NDVI数据集,采用线性回归分析、Mann-Kendall检验、地理探测器模型,分析了1982—2015年黄河中游植被NDVI的时空演变特征,并对影响植被NDVI的自然和人为因子进行了驱动力分析。[结果]1982—2015年黄河中游NDVI呈上升趋势,空间上呈东南高西北低分布.植被覆盖改善面积高达70.79%,显著改善面积为49.2%。年降水量是黄河中游NDVI变化的主要驱动因子,植被类型、地貌类型、土地利用类型和土壤类型等因子也能很好地解释黄河中游植被覆盖状况。自然因子对植被变化的影响远高于人为因子,因子交互结果为双因子增强或非线性增强。[结论]黄河中游植被NDVI主要受年降水量影响,34年间在自然和人为因素交互作用下植被显著改善,未来应更加注重人类活动对植被覆盖的影响。 展开更多
关键词 ndvi 时空变化 地理探测器模型 黄河中游
下载PDF
上一页 1 2 237 下一页 到第
使用帮助 返回顶部