This paper informally introduces colored object-oriented Petri Nets(COOPN) with the application of the AUV system.According to the characteristic of the AUV system's running environment,the object-oriented method ...This paper informally introduces colored object-oriented Petri Nets(COOPN) with the application of the AUV system.According to the characteristic of the AUV system's running environment,the object-oriented method is used in this paper not only to dispart system modules but also construct the refined running model of AUV system,then the colored Petri Net method is used to establish hierarchically detailed model in order to get the performance analyzing information of the system.After analyzing the model implementation,the errors of architecture designing and function realization can be found.If the errors can be modified on time,the experiment time in the pool can be reduced and the cost can be saved.展开更多
In the present study, the dynamic response of a coupled SPM-feeder-cage system under irregular waves and shear currents is analyzed. A numerical model is developed by using the commercial software Orca Flex. Hydrodyna...In the present study, the dynamic response of a coupled SPM-feeder-cage system under irregular waves and shear currents is analyzed. A numerical model is developed by using the commercial software Orca Flex. Hydrodynamics coefficients of the vessel are calculated by using a 3D diffraction/radiation panel program. First- and second-order wave forces are included in the calculations. Morison equation is used to compute the drag force on line elements representing the net. Drag coefficients are determined at every time step in the simulation considering the relative normal velocity between the structural elements and the fluid flow. The dynamic response of the coupled system is analyzed for various environments and net materials. The results of the study show the effects of solidity ratio of the net and vertical positions of the cage on the overall dynamic response of the system, confirming the viability of this type of configuration for future development of offshore aquaculture in deep waters.展开更多
基金Supported by the Foundation of Harbin Engineering University Foundation under Grant No.HEUFT05035
文摘This paper informally introduces colored object-oriented Petri Nets(COOPN) with the application of the AUV system.According to the characteristic of the AUV system's running environment,the object-oriented method is used in this paper not only to dispart system modules but also construct the refined running model of AUV system,then the colored Petri Net method is used to establish hierarchically detailed model in order to get the performance analyzing information of the system.After analyzing the model implementation,the errors of architecture designing and function realization can be found.If the errors can be modified on time,the experiment time in the pool can be reduced and the cost can be saved.
基金Kampachi Farms LLC for their support to complete this work and for all the technical information provided to complete the numerical model
文摘In the present study, the dynamic response of a coupled SPM-feeder-cage system under irregular waves and shear currents is analyzed. A numerical model is developed by using the commercial software Orca Flex. Hydrodynamics coefficients of the vessel are calculated by using a 3D diffraction/radiation panel program. First- and second-order wave forces are included in the calculations. Morison equation is used to compute the drag force on line elements representing the net. Drag coefficients are determined at every time step in the simulation considering the relative normal velocity between the structural elements and the fluid flow. The dynamic response of the coupled system is analyzed for various environments and net materials. The results of the study show the effects of solidity ratio of the net and vertical positions of the cage on the overall dynamic response of the system, confirming the viability of this type of configuration for future development of offshore aquaculture in deep waters.