White tea encompasses a number of teas unique to eastern Fujian in China. Although white tea extracts have been reported to result in cancer cell apoptosis, to date, few studies have evaluated the mechanism of such ap...White tea encompasses a number of teas unique to eastern Fujian in China. Although white tea extracts have been reported to result in cancer cell apoptosis, to date, few studies have evaluated the mechanism of such apoptotic induction. A transcription factor that plays a critical role in cell apoptosis, NF-κB p65, is also likely critical by which white tea extracts induce cancer cell apoptosis. In this study, white tea aqueous extract (WTAE) was added to BEL-7402 and Hela cell media and NF-κB p65 activation was evaluated using western blotting and immunofluorescence. Results revealed that the phosphorylation of IKBα and p65 decreased in both cell lines after WTAE treatment. And the nuclear translocation of NF-κB p65 in both cell lines was also reduced with the WTAE treatment. NF-κB p65 inhibition was noted to accelerate apoptosis. Our findings suggest that NF-κB p65 was an important modulator in WTAE-induced apoptotic signal transduction and it acted as a negative regulator of apoptotic induction in BEL-7402 and Hela cancer cell lines.展开更多
文摘White tea encompasses a number of teas unique to eastern Fujian in China. Although white tea extracts have been reported to result in cancer cell apoptosis, to date, few studies have evaluated the mechanism of such apoptotic induction. A transcription factor that plays a critical role in cell apoptosis, NF-κB p65, is also likely critical by which white tea extracts induce cancer cell apoptosis. In this study, white tea aqueous extract (WTAE) was added to BEL-7402 and Hela cell media and NF-κB p65 activation was evaluated using western blotting and immunofluorescence. Results revealed that the phosphorylation of IKBα and p65 decreased in both cell lines after WTAE treatment. And the nuclear translocation of NF-κB p65 in both cell lines was also reduced with the WTAE treatment. NF-κB p65 inhibition was noted to accelerate apoptosis. Our findings suggest that NF-κB p65 was an important modulator in WTAE-induced apoptotic signal transduction and it acted as a negative regulator of apoptotic induction in BEL-7402 and Hela cancer cell lines.