The nesting problem involves arranging pieces on a plate to maximize use of material. A new scheme for 2D ir- regular-shaped nesting problem is proposed. The new scheme is based on the NFP (No Fit Polygon) algorithm a...The nesting problem involves arranging pieces on a plate to maximize use of material. A new scheme for 2D ir- regular-shaped nesting problem is proposed. The new scheme is based on the NFP (No Fit Polygon) algorithm and a new placement principle for pieces. The novel placement principle is to place a piece to the position with lowest gravity center based on NFP. In addition, genetic algorithm (GA) is adopted to find an efficient nesting sequence. The proposed scheme can deal with pieces with arbitrary rotation and containing region with holes, and achieves competitive results in experiment on benchmark datasets.展开更多
所有非营利性医院每年必须向联邦税务局报告医院最高个人收入的前五名数据,并在网上公布。当2010年10月,斯图尔特医疗体系(Steward Health Care System LLC,下称"Steward")在美国马萨诸塞州一成立,便开启了颇具争议的话题。因为Stew...所有非营利性医院每年必须向联邦税务局报告医院最高个人收入的前五名数据,并在网上公布。当2010年10月,斯图尔特医疗体系(Steward Health Care System LLC,下称"Steward")在美国马萨诸塞州一成立,便开启了颇具争议的话题。因为Steward从创始起,展开更多
针对传统工业生产中二维不规则钣金零件的利用率不高、计算时间较长的问题,提出了以能量函数为载体的BL-NFP(Bottom Left-No Fit Polygon)神经网络算法。该算法是将BL(Bottom-Left)定位算法和临界多边形(No-Fit Polygon,NFP)几何特性相...针对传统工业生产中二维不规则钣金零件的利用率不高、计算时间较长的问题,提出了以能量函数为载体的BL-NFP(Bottom Left-No Fit Polygon)神经网络算法。该算法是将BL(Bottom-Left)定位算法和临界多边形(No-Fit Polygon,NFP)几何特性相结合,同时模拟了钣金零件的排样过程。并采取对待排入零件优先进行面积大小核算、再排入待排物体的方式,并利用Matlab对算法的输出数据和前人所列出的数据结果进行了测试对比。结果表明:BL定位算法能够合理地计算出零件的排入位置,NFP能够有效地解决不规则零件排样利用率小的问题,神经网络算法则能够有效地提高求解速度。针对二维不规则钣金零件的排样问题,与传统神经网络算法相比较,采用该算法缩短了钣金零件下料机器计算最优解40%的时间,并提高了约8%的钣金材料利用率。展开更多
基金Project (No. 60573146) supported by the National Natural ScienceFoundation of China
文摘The nesting problem involves arranging pieces on a plate to maximize use of material. A new scheme for 2D ir- regular-shaped nesting problem is proposed. The new scheme is based on the NFP (No Fit Polygon) algorithm and a new placement principle for pieces. The novel placement principle is to place a piece to the position with lowest gravity center based on NFP. In addition, genetic algorithm (GA) is adopted to find an efficient nesting sequence. The proposed scheme can deal with pieces with arbitrary rotation and containing region with holes, and achieves competitive results in experiment on benchmark datasets.
文摘针对传统工业生产中二维不规则钣金零件的利用率不高、计算时间较长的问题,提出了以能量函数为载体的BL-NFP(Bottom Left-No Fit Polygon)神经网络算法。该算法是将BL(Bottom-Left)定位算法和临界多边形(No-Fit Polygon,NFP)几何特性相结合,同时模拟了钣金零件的排样过程。并采取对待排入零件优先进行面积大小核算、再排入待排物体的方式,并利用Matlab对算法的输出数据和前人所列出的数据结果进行了测试对比。结果表明:BL定位算法能够合理地计算出零件的排入位置,NFP能够有效地解决不规则零件排样利用率小的问题,神经网络算法则能够有效地提高求解速度。针对二维不规则钣金零件的排样问题,与传统神经网络算法相比较,采用该算法缩短了钣金零件下料机器计算最优解40%的时间,并提高了约8%的钣金材料利用率。