The automatic stealth task of military time-sensitive targets plays a crucial role in maintaining national military security and mastering battlefield dynamics in military applications.We propose a novel Military Time...The automatic stealth task of military time-sensitive targets plays a crucial role in maintaining national military security and mastering battlefield dynamics in military applications.We propose a novel Military Time-sensitive Targets Stealth Network via Real-time Mask Generation(MTTSNet).According to our knowledge,this is the first technology to automatically remove military targets in real-time from videos.The critical steps of MTTSNet are as follows:First,we designed a real-time mask generation network based on the encoder-decoder framework,combined with the domain expansion structure,to effectively extract mask images.Specifically,the ASPP structure in the encoder could achieve advanced semantic feature fusion.The decoder stacked high-dimensional information with low-dimensional information to obtain an effective mask layer.Subsequently,the domain expansion module guided the adaptive expansion of mask images.Second,a context adversarial generation network based on gated convolution was constructed to achieve background restoration of mask positions in the original image.In addition,our method worked in an end-to-end manner.A particular semantic segmentation dataset for military time-sensitive targets has been constructed,called the Military Time-sensitive Target Masking Dataset(MTMD).The MTMD dataset experiment successfully demonstrated that this method could create a mask that completely occludes the target and that the target could be hidden in real time using this mask.We demonstrated the concealment performance of our proposed method by comparing it to a number of well-known and highly optimized baselines.展开更多
With the current integration of distributed energy resources into the grid,the structure of distribution networks is becoming more complex.This complexity significantly expands the solution space in the optimization p...With the current integration of distributed energy resources into the grid,the structure of distribution networks is becoming more complex.This complexity significantly expands the solution space in the optimization process for network reconstruction using intelligent algorithms.Consequently,traditional intelligent algorithms frequently encounter insufficient search accuracy and become trapped in local optima.To tackle this issue,a more advanced particle swarm optimization algorithm is proposed.To address the varying emphases at different stages of the optimization process,a dynamic strategy is implemented to regulate the social and self-learning factors.The Metropolis criterion is introduced into the simulated annealing algorithm to occasionally accept suboptimal solutions,thereby mitigating premature convergence in the population optimization process.The inertia weight is adjusted using the logistic mapping technique to maintain a balance between the algorithm’s global and local search abilities.The incorporation of the Pareto principle involves the consideration of network losses and voltage deviations as objective functions.A fuzzy membership function is employed for selecting the results.Simulation analysis is carried out on the restructuring of the distribution network,using the IEEE-33 node system and the IEEE-69 node system as examples,in conjunction with the integration of distributed energy resources.The findings demonstrate that,in comparison to other intelligent optimization algorithms,the proposed enhanced algorithm demonstrates a shorter convergence time and effectively reduces active power losses within the network.Furthermore,it enhances the amplitude of node voltages,thereby improving the stability of distribution network operations and power supply quality.Additionally,the algorithm exhibits a high level of generality and applicability.展开更多
The Tetrahedral Network(TEN) is a powerful 3-D vector structure in GIS, which has a lot of advantages such as simple structure, fast topological relation processing and rapid visualization. The difficulty of TEN appli...The Tetrahedral Network(TEN) is a powerful 3-D vector structure in GIS, which has a lot of advantages such as simple structure, fast topological relation processing and rapid visualization. The difficulty of TEN application is automatic creating data structure. Although a raster algorithm has been introduced by some authors, the problems in accuracy, memory requirement, speed and integrity are still existent. In this paper, the raster algorithm is completed and a vector algorithm is presented after a 3-D data model and structure of TEN have been introducted. Finally, experiment, conclusion and future work are discussed.展开更多
In this paper we have designed an implemented an integrated framework of QoS for Three Level Mobility Model(TLMM),which has been recently proved to be the optimal mobility management solution for next generation wirel...In this paper we have designed an implemented an integrated framework of QoS for Three Level Mobility Model(TLMM),which has been recently proved to be the optimal mobility management solution for next generation wireless IP-based networks.The QoS solution uses a combination of IntServ and DiffServ models incorporated in TLMM architecture.The paper also proposes an effi cient dynamic handover policy that takes care of false handover.Simulation and analytical results have shown that this infrastructure guarantees eff icient QoS handling and scalability among end users.To provide a comparative understanding of the QoS mechanism and signaling load of TLMM we have used TeleMIP(without QoS support) and MIP as alternative mobility management protocols.展开更多
Aimed at lowering the effect of 'rich get richer' in scale-free networks with the Barab^si and Albert model, this paper proposes a new evolving mechanism, which includes dividing and preference attachment for the gr...Aimed at lowering the effect of 'rich get richer' in scale-free networks with the Barab^si and Albert model, this paper proposes a new evolving mechanism, which includes dividing and preference attachment for the growth of a network. A broad scale characteristic which is independent of the initial network topology is obtained with the proposed model. By simulating, it is found that preferential attachment causes the appearance of the scale-free characteristic, while the dividing will decrease the power-law behaviour and drive the evolution of broad scale networks.展开更多
Generative adversarial networks(GANs)with gaming abilities have been widely applied in image generation.However,gamistic generators and discriminators may reduce the robustness of the obtained GANs in image generation...Generative adversarial networks(GANs)with gaming abilities have been widely applied in image generation.However,gamistic generators and discriminators may reduce the robustness of the obtained GANs in image generation under varying scenes.Enhancing the relation of hierarchical information in a generation network and enlarging differences of different network architectures can facilitate more structural information to improve the generation effect for image generation.In this paper,we propose an enhanced GAN via improving a generator for image generation(EIGGAN).EIGGAN applies a spatial attention to a generator to extract salient information to enhance the truthfulness of the generated images.Taking into relation the context account,parallel residual operations are fused into a generation network to extract more structural information from the different layers.Finally,a mixed loss function in a GAN is exploited to make a tradeoff between speed and accuracy to generate more realistic images.Experimental results show that the proposed method is superior to popular methods,i.e.,Wasserstein GAN with gradient penalty(WGAN-GP)in terms of many indexes,i.e.,Frechet Inception Distance,Learned Perceptual Image Patch Similarity,Multi-Scale Structural Similarity Index Measure,Kernel Inception Distance,Number of Statistically-Different Bins,Inception Score and some visual images for image generation.展开更多
Predicting wind power gen eration over the medium and long term is helpful for dispatchi ng departme nts,as it aids in constructing generation plans and electricity market transactions.This study presents a monthly wi...Predicting wind power gen eration over the medium and long term is helpful for dispatchi ng departme nts,as it aids in constructing generation plans and electricity market transactions.This study presents a monthly wind power gen eration forecast!ng method based on a climate model and long short-term memory(LSTM)n eural n etwork.A non linear mappi ng model is established between the meteorological elements and wind power monthly utilization hours.After considering the meteorological data(as predicted for the future)and new installed capacity planning,the monthly wind power gen eration forecast results are output.A case study shows the effectiveness of the prediction method.展开更多
Accurate insight into the heat generation rate(HGR) of lithium-ion batteries(LIBs) is one of key issues for battery management systems to formulate thermal safety warning strategies in advance.For this reason,this pap...Accurate insight into the heat generation rate(HGR) of lithium-ion batteries(LIBs) is one of key issues for battery management systems to formulate thermal safety warning strategies in advance.For this reason,this paper proposes a novel physics-informed neural network(PINN) approach for HGR estimation of LIBs under various driving conditions.Specifically,a single particle model with thermodynamics(SPMT) is first constructed for extracting the critical physical knowledge related with battery HGR.Subsequently,the surface concentrations of positive and negative electrodes in battery SPMT model are integrated into the bidirectional long short-term memory(BiLSTM) networks as physical information.And combined with other feature variables,a novel PINN approach to achieve HGR estimation of LIBs with higher accuracy is constituted.Additionally,some critical hyperparameters of BiLSTM used in PINN approach are determined through Bayesian optimization algorithm(BOA) and the results of BOA-based BiLSTM are compared with other traditional BiLSTM/LSTM networks.Eventually,combined with the HGR data generated from the validated virtual battery,it is proved that the proposed approach can well predict the battery HGR under the dynamic stress test(DST) and worldwide light vehicles test procedure(WLTP),the mean absolute error under DST is 0.542 kW/m^(3),and the root mean square error under WLTP is1.428 kW/m^(3)at 25℃.Lastly,the investigation results of this paper also show a new perspective in the application of the PINN approach in battery HGR estimation.展开更多
For rechargeable wireless sensor networks,limited energy storage capacity,dynamic energy supply,low and dynamic duty cycles cause that it is unpractical to maintain a fixed routing path for packets delivery permanentl...For rechargeable wireless sensor networks,limited energy storage capacity,dynamic energy supply,low and dynamic duty cycles cause that it is unpractical to maintain a fixed routing path for packets delivery permanently from a source to destination in a distributed scenario.Therefore,before data delivery,a sensor has to update its waking schedule continuously and share them to its neighbors,which lead to high energy expenditure for reestablishing path links frequently and low efficiency of energy utilization for collecting packets.In this work,we propose the maximum data generation rate routing protocol based on data flow controlling technology.For a sensor,it does not share its waking schedule to its neighbors and cache any waking schedules of other sensors.Hence,the energy consumption for time synchronization,location information and waking schedule shared will be reduced significantly.The saving energy can be used for improving data collection rate.Simulation shows our scheme is efficient to improve packets generation rate in rechargeable wireless sensor networks.展开更多
Considering the instability of the output power of photovoltaic(PV)generation system,to improve the power regulation ability of PV power during grid-connected operation,based on the quantitative analysis of meteorolog...Considering the instability of the output power of photovoltaic(PV)generation system,to improve the power regulation ability of PV power during grid-connected operation,based on the quantitative analysis of meteorological conditions,a short-term prediction method of PV power based on LMD-EE-ESN with iterative error correction was proposed.Firstly,through the fuzzy clustering processing of meteorological conditions,taking the power curves of PV power generation in sunny,rainy or snowy,cloudy,and changeable weather as the reference,the local mean decomposition(LMD)was carried out respectively,and their energy entropy(EE)was taken as the meteorological characteristics.Then,the historical generation power series was decomposed by LMD algorithm,and the hierarchical prediction of the power curve was realized by echo state network(ESN)prediction algorithm combined with meteorological characteristics.Finally,the iterative error theory was applied to the correction of power prediction results.The analysis of the historical data in the PV power generation system shows that this method avoids the influence of meteorological conditions in the short-term prediction of PV output power,and improves the accuracy of power prediction on the condition of hierarchical prediction and iterative error correction.展开更多
For the characteristics of wind power generation system is multivariable, nonlinear and random, in this paper the neural network PID adaptive control is adopted. The size of pitch angle is adjusted in time to improve ...For the characteristics of wind power generation system is multivariable, nonlinear and random, in this paper the neural network PID adaptive control is adopted. The size of pitch angle is adjusted in time to improve the perfomance of power control. The PID parameters are corrected by the gradient descent method, and Radial Basis Functiion (RBF) neural network is used as the system identifier in this method. Sinlation results show that by using neural network adaptive PID controller the generator power control can inhibit effectively the speed and affect the output prover of generator. The dynamic performnce and robustness of the controlled system is good, and the peformance of wind power system is improved.展开更多
An improved self-organizing feature map (SOFM) neural network is presented to generate rectangular and hexagonal lattic with normal vector attached to each vertex. After the neural network was trained, the whole scatt...An improved self-organizing feature map (SOFM) neural network is presented to generate rectangular and hexagonal lattic with normal vector attached to each vertex. After the neural network was trained, the whole scattered data were divided into sub-regions where classified core were represented by the weight vectors of neurons at the output layer of neural network. The weight vectors of the neurons were used to approximate the dense 3-D scattered points, so the dense scattered points could be reduced to a reasonable scale, while the topological feature of the whole scattered points were remained.展开更多
Network traffic is very important for testing network equipment, network services, and security products. A new method of generating traffic based on statistical packet-level characteristics is proposed. In every time...Network traffic is very important for testing network equipment, network services, and security products. A new method of generating traffic based on statistical packet-level characteristics is proposed. In every time unit, the generator determines the sent packets number, the type and size of every sent packet according to the statistical characteristics of the original traffic. Then every packet, in which the protocol headers of transport layer, network layer and ethernet layer are encapsulated, is sent via the responding network interface card in the time unit. The results in the experiment show that the correlation coefficients between the bandwidth, the packet number, packet size distribution, the fragment number of the generated network traffic and those of the original traffic are all more than 0.96. The generated traffic and original traffic are very highly related and similar.展开更多
It is noted that the revolutionary development of technologies,fundamental change of traffic composition,trend of network convergence as well as market opening and competition have become the driving forces to develop...It is noted that the revolutionary development of technologies,fundamental change of traffic composition,trend of network convergence as well as market opening and competition have become the driving forces to develop Next Generation Networks (NGN).After introducing the concepts and characteristics of NGN,the paper details its 5 strategic development directions:evolution to softswitch-based next generation switching network, evolution to next generation mobile communication network represented by 3G,evolution to IPv6-based next generation Internet,evolution to diversified broadband access network,and evolution to next generation transport network based on optical networking.Finally,it briefs the strategic thinking on NGN of China Telecom,the largest fixed network carrier in the world.展开更多
Next Generation Network(NGN)is not a single architecture but a set of architectures with a common set of principles and hence varies by service provider history,target applications and assets.The paper introduces NGN ...Next Generation Network(NGN)is not a single architecture but a set of architectures with a common set of principles and hence varies by service provider history,target applications and assets.The paper introduces NGN functional requirements,NGN services and NGN architectural features.It also discusses why NGN is needed,when NGN is targeted,NGN trends and NGN deployment.It concludes that it is no longer a case whether NGN is needed but rather when and at what speed of the evolution.展开更多
The provision mode of the telecommunication service has experienced an evolving process, and showing the developing trend from distributed to centralized, from integrated to separated, and from closed to open. To suit...The provision mode of the telecommunication service has experienced an evolving process, and showing the developing trend from distributed to centralized, from integrated to separated, and from closed to open. To suit this trend, there will be three provision modes as Session Initiation Protocol (SIP) server, Open Service Access (OSA) application server and intelligent network(IN) in Next Generation Network (NGN), provides all kinds of services and applications to the subscribers. With the popularity of broadband access and Internet, the NGN will provide single telecommunication service and act as the important national infrastructure to offer various information services to the subscribers. The service provision mode will be more open, diversified, and individualized.展开更多
A reinforcemen based fuzzy neural network control with automatic rule generation (RBFNNC) is proposed. A set of optimized fuzzy control rules can be automatically generated through reinforcement learning based on the...A reinforcemen based fuzzy neural network control with automatic rule generation (RBFNNC) is proposed. A set of optimized fuzzy control rules can be automatically generated through reinforcement learning based on the state variables of object system. RBFNNC was applied to a cart pole balancing system and simulation result shows significant improvements on the rule generation.展开更多
The advent of the Next Generation Network (NGN), a new service-driven network, urges the telecom service operators to consider transforming from single-service providers to full-service providers. During the transform...The advent of the Next Generation Network (NGN), a new service-driven network, urges the telecom service operators to consider transforming from single-service providers to full-service providers. During the transformation, they should be concerned about the network user number and the network quality as well as the value added network information. The low threshold for service provision brings a new breed of service providers, which impacts upon the current regulation policy. To adapt to the development of the NGN, it is a necessity to improve the regulation policy in terms of service operators management, user management, Quality of Service (QoS) assurance, service monitoring, charging, and settlement. Meanwhile, regulatory authorities should establish a new body as quickly as possible to meet the trend of the NGN convergence. The new regulatory body would be responsible for regulating operators who will be awarded full-service licenses, and managing new service providers effectively to guarantee the user’s interests.展开更多
The Deep Packet Inspection(DPI)method is a popular method that can accurately identify the flow data and its corresponding application.Currently,the DPI method is widely used in common network management systems.Howev...The Deep Packet Inspection(DPI)method is a popular method that can accurately identify the flow data and its corresponding application.Currently,the DPI method is widely used in common network management systems.However,the major limitation of DPI systems is that their signature library is mainly extracted manually,which makes it hard to efficiently obtain the signature of new applications.Hence,in this paper,we propose an automatic signature extraction mechanism using Principal Component Analysis(PCA)technology,which is able to extract the signature automatically.In the proposed method,the signatures are expressed in the form of serial consistent sequences constructed by principal components instead of normally separated substrings in the original data extracted from the traditional methods.Extensive experiments based on numerous sets of data have been carried out to evaluate the performance of the proposed scheme,and the results prove that the newly proposed method can achieve good performance in terms of accuracy and efficiency.展开更多
基金supported in part by the National Natural Science Foundation of China(Grant No.62276274)Shaanxi Natural Science Foundation(Grant No.2023-JC-YB-528)Chinese aeronautical establishment(Grant No.201851U8012)。
文摘The automatic stealth task of military time-sensitive targets plays a crucial role in maintaining national military security and mastering battlefield dynamics in military applications.We propose a novel Military Time-sensitive Targets Stealth Network via Real-time Mask Generation(MTTSNet).According to our knowledge,this is the first technology to automatically remove military targets in real-time from videos.The critical steps of MTTSNet are as follows:First,we designed a real-time mask generation network based on the encoder-decoder framework,combined with the domain expansion structure,to effectively extract mask images.Specifically,the ASPP structure in the encoder could achieve advanced semantic feature fusion.The decoder stacked high-dimensional information with low-dimensional information to obtain an effective mask layer.Subsequently,the domain expansion module guided the adaptive expansion of mask images.Second,a context adversarial generation network based on gated convolution was constructed to achieve background restoration of mask positions in the original image.In addition,our method worked in an end-to-end manner.A particular semantic segmentation dataset for military time-sensitive targets has been constructed,called the Military Time-sensitive Target Masking Dataset(MTMD).The MTMD dataset experiment successfully demonstrated that this method could create a mask that completely occludes the target and that the target could be hidden in real time using this mask.We demonstrated the concealment performance of our proposed method by comparing it to a number of well-known and highly optimized baselines.
基金This research is supported by the Science and Technology Program of Gansu Province(No.23JRRA880).
文摘With the current integration of distributed energy resources into the grid,the structure of distribution networks is becoming more complex.This complexity significantly expands the solution space in the optimization process for network reconstruction using intelligent algorithms.Consequently,traditional intelligent algorithms frequently encounter insufficient search accuracy and become trapped in local optima.To tackle this issue,a more advanced particle swarm optimization algorithm is proposed.To address the varying emphases at different stages of the optimization process,a dynamic strategy is implemented to regulate the social and self-learning factors.The Metropolis criterion is introduced into the simulated annealing algorithm to occasionally accept suboptimal solutions,thereby mitigating premature convergence in the population optimization process.The inertia weight is adjusted using the logistic mapping technique to maintain a balance between the algorithm’s global and local search abilities.The incorporation of the Pareto principle involves the consideration of network losses and voltage deviations as objective functions.A fuzzy membership function is employed for selecting the results.Simulation analysis is carried out on the restructuring of the distribution network,using the IEEE-33 node system and the IEEE-69 node system as examples,in conjunction with the integration of distributed energy resources.The findings demonstrate that,in comparison to other intelligent optimization algorithms,the proposed enhanced algorithm demonstrates a shorter convergence time and effectively reduces active power losses within the network.Furthermore,it enhances the amplitude of node voltages,thereby improving the stability of distribution network operations and power supply quality.Additionally,the algorithm exhibits a high level of generality and applicability.
基金Project supported by the National Natural Science Foundation of China (No.69833010)
文摘The Tetrahedral Network(TEN) is a powerful 3-D vector structure in GIS, which has a lot of advantages such as simple structure, fast topological relation processing and rapid visualization. The difficulty of TEN application is automatic creating data structure. Although a raster algorithm has been introduced by some authors, the problems in accuracy, memory requirement, speed and integrity are still existent. In this paper, the raster algorithm is completed and a vector algorithm is presented after a 3-D data model and structure of TEN have been introducted. Finally, experiment, conclusion and future work are discussed.
文摘In this paper we have designed an implemented an integrated framework of QoS for Three Level Mobility Model(TLMM),which has been recently proved to be the optimal mobility management solution for next generation wireless IP-based networks.The QoS solution uses a combination of IntServ and DiffServ models incorporated in TLMM architecture.The paper also proposes an effi cient dynamic handover policy that takes care of false handover.Simulation and analytical results have shown that this infrastructure guarantees eff icient QoS handling and scalability among end users.To provide a comparative understanding of the QoS mechanism and signaling load of TLMM we have used TeleMIP(without QoS support) and MIP as alternative mobility management protocols.
基金The authors are grateful to X M Zhao for many valuable discussions. Project supported by the National Basic Research Program of China (Grant No 2006CB705500), the National Natural Science Foundation of China (Grant No 70501005), the Special Researcher Foundation of Beijing Jiaotong University (Grant No 48111).
文摘Aimed at lowering the effect of 'rich get richer' in scale-free networks with the Barab^si and Albert model, this paper proposes a new evolving mechanism, which includes dividing and preference attachment for the growth of a network. A broad scale characteristic which is independent of the initial network topology is obtained with the proposed model. By simulating, it is found that preferential attachment causes the appearance of the scale-free characteristic, while the dividing will decrease the power-law behaviour and drive the evolution of broad scale networks.
基金supported in part by the Science and Technology Development Fund,Macao S.A.R(FDCT)0028/2023/RIA1,in part by Leading Talents in Gusu Innovation and Entrepreneurship Grant ZXL2023170in part by the TCL Science and Technology Innovation Fund under Grant D5140240118in part by the Guangdong Basic and Applied Basic Research Foundation under Grant 2021A1515110079.
文摘Generative adversarial networks(GANs)with gaming abilities have been widely applied in image generation.However,gamistic generators and discriminators may reduce the robustness of the obtained GANs in image generation under varying scenes.Enhancing the relation of hierarchical information in a generation network and enlarging differences of different network architectures can facilitate more structural information to improve the generation effect for image generation.In this paper,we propose an enhanced GAN via improving a generator for image generation(EIGGAN).EIGGAN applies a spatial attention to a generator to extract salient information to enhance the truthfulness of the generated images.Taking into relation the context account,parallel residual operations are fused into a generation network to extract more structural information from the different layers.Finally,a mixed loss function in a GAN is exploited to make a tradeoff between speed and accuracy to generate more realistic images.Experimental results show that the proposed method is superior to popular methods,i.e.,Wasserstein GAN with gradient penalty(WGAN-GP)in terms of many indexes,i.e.,Frechet Inception Distance,Learned Perceptual Image Patch Similarity,Multi-Scale Structural Similarity Index Measure,Kernel Inception Distance,Number of Statistically-Different Bins,Inception Score and some visual images for image generation.
基金National Key R&D Program of China"Study on impact assessment of ecological climate and environment on the wind fann and photovoltaic plants"(2018YFB1502800)Science and Technology Project of State Grid Hebei Electric Power Company"Research and application of medium and long-term forecasting technology for regional wind and photovoltaic resources and generation capacity",(5204BB170007)Special Fund Project of Hebei Provincial Government(19214310D).
文摘Predicting wind power gen eration over the medium and long term is helpful for dispatchi ng departme nts,as it aids in constructing generation plans and electricity market transactions.This study presents a monthly wind power gen eration forecast!ng method based on a climate model and long short-term memory(LSTM)n eural n etwork.A non linear mappi ng model is established between the meteorological elements and wind power monthly utilization hours.After considering the meteorological data(as predicted for the future)and new installed capacity planning,the monthly wind power gen eration forecast results are output.A case study shows the effectiveness of the prediction method.
基金funded by the Artificial Intelligence Technology Project of Xi’an Science and Technology Bureau in China(No.21RGZN0014)。
文摘Accurate insight into the heat generation rate(HGR) of lithium-ion batteries(LIBs) is one of key issues for battery management systems to formulate thermal safety warning strategies in advance.For this reason,this paper proposes a novel physics-informed neural network(PINN) approach for HGR estimation of LIBs under various driving conditions.Specifically,a single particle model with thermodynamics(SPMT) is first constructed for extracting the critical physical knowledge related with battery HGR.Subsequently,the surface concentrations of positive and negative electrodes in battery SPMT model are integrated into the bidirectional long short-term memory(BiLSTM) networks as physical information.And combined with other feature variables,a novel PINN approach to achieve HGR estimation of LIBs with higher accuracy is constituted.Additionally,some critical hyperparameters of BiLSTM used in PINN approach are determined through Bayesian optimization algorithm(BOA) and the results of BOA-based BiLSTM are compared with other traditional BiLSTM/LSTM networks.Eventually,combined with the HGR data generated from the validated virtual battery,it is proved that the proposed approach can well predict the battery HGR under the dynamic stress test(DST) and worldwide light vehicles test procedure(WLTP),the mean absolute error under DST is 0.542 kW/m^(3),and the root mean square error under WLTP is1.428 kW/m^(3)at 25℃.Lastly,the investigation results of this paper also show a new perspective in the application of the PINN approach in battery HGR estimation.
基金This work was supported by The National Natural Science Fund of China(Grant No.31670554)The Natural Science Foundation of Jiangsu Province of China(Grant No.BK20161527)+1 种基金We also received three Projects Funded by The Project funded by China Postdoctoral Science Foundation(Grant Nos.2018T110505,2017M611828)The Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutions.The authors wish to express their appreciation to the reviewers for their helpful suggestions which greatly improved the presentation of this paper.
文摘For rechargeable wireless sensor networks,limited energy storage capacity,dynamic energy supply,low and dynamic duty cycles cause that it is unpractical to maintain a fixed routing path for packets delivery permanently from a source to destination in a distributed scenario.Therefore,before data delivery,a sensor has to update its waking schedule continuously and share them to its neighbors,which lead to high energy expenditure for reestablishing path links frequently and low efficiency of energy utilization for collecting packets.In this work,we propose the maximum data generation rate routing protocol based on data flow controlling technology.For a sensor,it does not share its waking schedule to its neighbors and cache any waking schedules of other sensors.Hence,the energy consumption for time synchronization,location information and waking schedule shared will be reduced significantly.The saving energy can be used for improving data collection rate.Simulation shows our scheme is efficient to improve packets generation rate in rechargeable wireless sensor networks.
基金supported by National Natural Science Foundation of China(No.516667017).
文摘Considering the instability of the output power of photovoltaic(PV)generation system,to improve the power regulation ability of PV power during grid-connected operation,based on the quantitative analysis of meteorological conditions,a short-term prediction method of PV power based on LMD-EE-ESN with iterative error correction was proposed.Firstly,through the fuzzy clustering processing of meteorological conditions,taking the power curves of PV power generation in sunny,rainy or snowy,cloudy,and changeable weather as the reference,the local mean decomposition(LMD)was carried out respectively,and their energy entropy(EE)was taken as the meteorological characteristics.Then,the historical generation power series was decomposed by LMD algorithm,and the hierarchical prediction of the power curve was realized by echo state network(ESN)prediction algorithm combined with meteorological characteristics.Finally,the iterative error theory was applied to the correction of power prediction results.The analysis of the historical data in the PV power generation system shows that this method avoids the influence of meteorological conditions in the short-term prediction of PV output power,and improves the accuracy of power prediction on the condition of hierarchical prediction and iterative error correction.
基金supported by the Science and Technology Major Special Projects Gansu(No.0801GKDA058)
文摘For the characteristics of wind power generation system is multivariable, nonlinear and random, in this paper the neural network PID adaptive control is adopted. The size of pitch angle is adjusted in time to improve the perfomance of power control. The PID parameters are corrected by the gradient descent method, and Radial Basis Functiion (RBF) neural network is used as the system identifier in this method. Sinlation results show that by using neural network adaptive PID controller the generator power control can inhibit effectively the speed and affect the output prover of generator. The dynamic performnce and robustness of the controlled system is good, and the peformance of wind power system is improved.
基金Supported by Science Foundation of Zhejiang (No. 599008) ZUCC Science Research Foundation
文摘An improved self-organizing feature map (SOFM) neural network is presented to generate rectangular and hexagonal lattic with normal vector attached to each vertex. After the neural network was trained, the whole scattered data were divided into sub-regions where classified core were represented by the weight vectors of neurons at the output layer of neural network. The weight vectors of the neurons were used to approximate the dense 3-D scattered points, so the dense scattered points could be reduced to a reasonable scale, while the topological feature of the whole scattered points were remained.
基金supported in part by national science and technology major project of the ministry of science and technology of China No. 2012BAH45B01Fundamental Research Funds for the Central Universities No. 2014ZD03-03
文摘Network traffic is very important for testing network equipment, network services, and security products. A new method of generating traffic based on statistical packet-level characteristics is proposed. In every time unit, the generator determines the sent packets number, the type and size of every sent packet according to the statistical characteristics of the original traffic. Then every packet, in which the protocol headers of transport layer, network layer and ethernet layer are encapsulated, is sent via the responding network interface card in the time unit. The results in the experiment show that the correlation coefficients between the bandwidth, the packet number, packet size distribution, the fragment number of the generated network traffic and those of the original traffic are all more than 0.96. The generated traffic and original traffic are very highly related and similar.
文摘It is noted that the revolutionary development of technologies,fundamental change of traffic composition,trend of network convergence as well as market opening and competition have become the driving forces to develop Next Generation Networks (NGN).After introducing the concepts and characteristics of NGN,the paper details its 5 strategic development directions:evolution to softswitch-based next generation switching network, evolution to next generation mobile communication network represented by 3G,evolution to IPv6-based next generation Internet,evolution to diversified broadband access network,and evolution to next generation transport network based on optical networking.Finally,it briefs the strategic thinking on NGN of China Telecom,the largest fixed network carrier in the world.
文摘Next Generation Network(NGN)is not a single architecture but a set of architectures with a common set of principles and hence varies by service provider history,target applications and assets.The paper introduces NGN functional requirements,NGN services and NGN architectural features.It also discusses why NGN is needed,when NGN is targeted,NGN trends and NGN deployment.It concludes that it is no longer a case whether NGN is needed but rather when and at what speed of the evolution.
文摘The provision mode of the telecommunication service has experienced an evolving process, and showing the developing trend from distributed to centralized, from integrated to separated, and from closed to open. To suit this trend, there will be three provision modes as Session Initiation Protocol (SIP) server, Open Service Access (OSA) application server and intelligent network(IN) in Next Generation Network (NGN), provides all kinds of services and applications to the subscribers. With the popularity of broadband access and Internet, the NGN will provide single telecommunication service and act as the important national infrastructure to offer various information services to the subscribers. The service provision mode will be more open, diversified, and individualized.
文摘A reinforcemen based fuzzy neural network control with automatic rule generation (RBFNNC) is proposed. A set of optimized fuzzy control rules can be automatically generated through reinforcement learning based on the state variables of object system. RBFNNC was applied to a cart pole balancing system and simulation result shows significant improvements on the rule generation.
文摘The advent of the Next Generation Network (NGN), a new service-driven network, urges the telecom service operators to consider transforming from single-service providers to full-service providers. During the transformation, they should be concerned about the network user number and the network quality as well as the value added network information. The low threshold for service provision brings a new breed of service providers, which impacts upon the current regulation policy. To adapt to the development of the NGN, it is a necessity to improve the regulation policy in terms of service operators management, user management, Quality of Service (QoS) assurance, service monitoring, charging, and settlement. Meanwhile, regulatory authorities should establish a new body as quickly as possible to meet the trend of the NGN convergence. The new regulatory body would be responsible for regulating operators who will be awarded full-service licenses, and managing new service providers effectively to guarantee the user’s interests.
基金supported by the National Natural Science Foundation of China under Grant No.61003282Beijing Higher Education Young Elite Teacher Project+3 种基金China Next Generation Internet(CNGI)Project"Research and Trial on Evolving Next Generation Network Intelligence Capability Enhancement(NICE)"the National Basic Research Program(973 Program)under Grant No.2009CB320-505the National Science and Technology Major Project"Research about Architecture of Mobile Internet"under Grant No.2011ZX03-002-001-01the National High Technology Research and Development Program(863 Program)under Grant No.2011AA010704
文摘The Deep Packet Inspection(DPI)method is a popular method that can accurately identify the flow data and its corresponding application.Currently,the DPI method is widely used in common network management systems.However,the major limitation of DPI systems is that their signature library is mainly extracted manually,which makes it hard to efficiently obtain the signature of new applications.Hence,in this paper,we propose an automatic signature extraction mechanism using Principal Component Analysis(PCA)technology,which is able to extract the signature automatically.In the proposed method,the signatures are expressed in the form of serial consistent sequences constructed by principal components instead of normally separated substrings in the original data extracted from the traditional methods.Extensive experiments based on numerous sets of data have been carried out to evaluate the performance of the proposed scheme,and the results prove that the newly proposed method can achieve good performance in terms of accuracy and efficiency.