Ir catalyst possesses a good electrocatalytic activity and selectivity for the oxidation of NH3 and/or NH4OH at Ir anode in the potential fixed electrochemical sensor with the neutral solution. Owing to the same elect...Ir catalyst possesses a good electrocatalytic activity and selectivity for the oxidation of NH3 and/or NH4OH at Ir anode in the potential fixed electrochemical sensor with the neutral solution. Owing to the same electrochemical behavior of NH3 and NH4OH in a NaClO4 solution, NH4OH can be used instead of NH3 for the experimental convenience. It was found that the potential of the oxidation peak of NH4OH at the Ir/GC electrode in NaClO4 solutions is at about 0.85 V, and the current density of the oxidation peak of NH4OH is linearly proportional to the concentration of NHaOH. The electrocatalytic oxidation of NH4OH is diffusion-controlled. Especially, Ir has no electrocatalytic activity for the CO oxidation, illustrating that CO does not interfere in the measurement of NH4OH and the potential fixed electrochemical NH3 sensor with the neutral solution, and the anodic Ir catalyst possesses a good selectivity. Therefore, Ir may have practical application in the potential fixed electrochemical NH3 sensor with the neutral solution.展开更多
Nanocrystalline titanium oxide thin films have been deposited by spin coating technique and then have been analyzed to test their application in NH3 gas-sensing technology. In particular, spectrophotometric and con-du...Nanocrystalline titanium oxide thin films have been deposited by spin coating technique and then have been analyzed to test their application in NH3 gas-sensing technology. In particular, spectrophotometric and con-ductivity measurements have been performed in order to determine the optical and electrical properties of titanium oxide thin films. The structure and the morphology of such material have been investigated by X ray diffraction, Scanning microscopy, high resolution electron microscopy and selected area electron diffrac-tion. The X-ray diffraction measurements confirmed that the films grown by this technique have good crys-talline tetragonal mixed anatase and rutile phase structure The HRTEM image of TiO2 thin film showed grains of about 50-60 nm in size with aggregation of 10-15 nm crystallites. Selected area electron diffraction pattern shows that the TiO2 films exhibited tetragonal structure. The surface morphology (SEM) of the TiO2 film showed that the nanoparticles are fine The optical band gap of TiO2 film is 3.26 eV. Gas sensing proper-ties showed that TiO2 films were sensitive as well as fast in responding to NH3. A high sensitivity for ammo-nia indicates that the TiO2 films are selective for this gas.展开更多
以Ni O为敏感电极材料,钇稳定氧化锆(YSZ)陶瓷片为电解质材料,采用丝网印刷技术制备了片式混合电势型NH3传感器,对传感器在不同NH3浓度和不同工作温度下响应性能进行了研究。结果显示:在工作温度为550℃时,传感器对NH3的响应值最大,达到...以Ni O为敏感电极材料,钇稳定氧化锆(YSZ)陶瓷片为电解质材料,采用丝网印刷技术制备了片式混合电势型NH3传感器,对传感器在不同NH3浓度和不同工作温度下响应性能进行了研究。结果显示:在工作温度为550℃时,传感器对NH3的响应值最大,达到-57 m V。制备的传感器在550℃时,对(50~600)×10-6NH3具有良好的响应性能,响应信号与NH3浓度的对数呈现出良好的线性关系。在550℃高温时,传感器表现较好的重复性,但其交叉敏感性有待提高。为阐述传感器的敏感机理,进行了交流阻抗测试研究。展开更多
基金Supported by RAE Engineering Center, RAE Systems Inc. Fund, China
文摘Ir catalyst possesses a good electrocatalytic activity and selectivity for the oxidation of NH3 and/or NH4OH at Ir anode in the potential fixed electrochemical sensor with the neutral solution. Owing to the same electrochemical behavior of NH3 and NH4OH in a NaClO4 solution, NH4OH can be used instead of NH3 for the experimental convenience. It was found that the potential of the oxidation peak of NH4OH at the Ir/GC electrode in NaClO4 solutions is at about 0.85 V, and the current density of the oxidation peak of NH4OH is linearly proportional to the concentration of NHaOH. The electrocatalytic oxidation of NH4OH is diffusion-controlled. Especially, Ir has no electrocatalytic activity for the CO oxidation, illustrating that CO does not interfere in the measurement of NH4OH and the potential fixed electrochemical NH3 sensor with the neutral solution, and the anodic Ir catalyst possesses a good selectivity. Therefore, Ir may have practical application in the potential fixed electrochemical NH3 sensor with the neutral solution.
文摘Nanocrystalline titanium oxide thin films have been deposited by spin coating technique and then have been analyzed to test their application in NH3 gas-sensing technology. In particular, spectrophotometric and con-ductivity measurements have been performed in order to determine the optical and electrical properties of titanium oxide thin films. The structure and the morphology of such material have been investigated by X ray diffraction, Scanning microscopy, high resolution electron microscopy and selected area electron diffrac-tion. The X-ray diffraction measurements confirmed that the films grown by this technique have good crys-talline tetragonal mixed anatase and rutile phase structure The HRTEM image of TiO2 thin film showed grains of about 50-60 nm in size with aggregation of 10-15 nm crystallites. Selected area electron diffraction pattern shows that the TiO2 films exhibited tetragonal structure. The surface morphology (SEM) of the TiO2 film showed that the nanoparticles are fine The optical band gap of TiO2 film is 3.26 eV. Gas sensing proper-ties showed that TiO2 films were sensitive as well as fast in responding to NH3. A high sensitivity for ammo-nia indicates that the TiO2 films are selective for this gas.
文摘以Ni O为敏感电极材料,钇稳定氧化锆(YSZ)陶瓷片为电解质材料,采用丝网印刷技术制备了片式混合电势型NH3传感器,对传感器在不同NH3浓度和不同工作温度下响应性能进行了研究。结果显示:在工作温度为550℃时,传感器对NH3的响应值最大,达到-57 m V。制备的传感器在550℃时,对(50~600)×10-6NH3具有良好的响应性能,响应信号与NH3浓度的对数呈现出良好的线性关系。在550℃高温时,传感器表现较好的重复性,但其交叉敏感性有待提高。为阐述传感器的敏感机理,进行了交流阻抗测试研究。