Cowpea (Vigna unguiculata L. Walp) is a multi-purpose legume with high quality protein for human consumption and livestock. The objective of this work was to develop near-infrared spectroscopy (NIRS) prediction models...Cowpea (Vigna unguiculata L. Walp) is a multi-purpose legume with high quality protein for human consumption and livestock. The objective of this work was to develop near-infrared spectroscopy (NIRS) prediction models to estimate protein content in cowpea. A total of 116 cowpea breeding lines with a wide range of protein contents (19.28 % to 32.04%) were selected to build the model using whole seed and ground seed samples. Partial least-squares discriminant analysis (PLS-DA) regression technique with different pre-treatments (derivatives, standard normal variate, and multiplicative scatter correction) were carried out to develop the protein prediction model. Results showed: 1) spectral plots of both the whole seed and ground seed showed higher spectral scatter at higher wavelengths (>1450 nm), 2) data pre-processing affects prediction accuracy for bot whole seed and ground seed samples, 3) prediction using ground seed samples (0.64 R<sup>2</sup> 0.85) is better than the whole seed (0.33 R<sup>2</sup> 0.78), and 4) the data pre-processing second derivative with standard normal variate has the best prediction (R<sup>2</sup>_whole seed = 0.78, R<sup>2</sup>_ground seed = 0.85). The results will be of interest in cowpea breeding programs aimed at improving total seed protein content.展开更多
Human serum albumin(HSA)is the most abundant protein in plasma and plays an essential physiological role in the human body.Ethanol precipitation is the most widely used way to obtain HSA,and pH and ethanol are crucial...Human serum albumin(HSA)is the most abundant protein in plasma and plays an essential physiological role in the human body.Ethanol precipitation is the most widely used way to obtain HSA,and pH and ethanol are crucial factors affecting the process.In this study,infrared(IR)spectroscopy and near-infrared(NIR)spectroscopy in combination with chemometrics were used to investigate the changes in the secondary structure and hydration of HSA at acidic pH(5.6-3.2)and isoelectric pH when ethanol concentration was varied from 0%to 40%as a perturbation.IR spectroscopy combined with the two-dimensional correlation spectroscopy(2DCOS)analysis for acid pH system proved that the secondary structure of HSA changed significantly when pH was around 4.5.What's more,the IR spectroscopy and 2DCOS analysis showed different secondary structure forms under different ethanol concentrations at the isoelectric pH.For the hydration effect analysis,NIR spectroscopy combined with the McCabe-Fisher method and aquaphotomics showed that the free hydrogen-bonded water fluctuates dynamically,with ethanol at 0-20%enhancing the hydrogen-bonded water clusters,while weak hydrogen-bonded water clusters were formed when the ethanol concentration increased continuously from 20%to 30%.These measurements provide new insights into the structural changes and changes in the hydration behavior of HSA,revealing the dynamic process of protein purification,and providing a theoretical basis for the selection of HSA alcoholic precipitation process parameters,as well as for further studies of complex biological systems.展开更多
Soil texture is an indicator of soil physical structure which delivers many ecological functions of soils such as thermal regime, plant growth, and soil quality. However, traditional methods for soil texture measureme...Soil texture is an indicator of soil physical structure which delivers many ecological functions of soils such as thermal regime, plant growth, and soil quality. However, traditional methods for soil texture measurement are time-consuming and labor-intensive. This study attempts to explore an indirect method for rapid estimating the texture of three subgroups of purple soils (i.e. calcareous, neutral, and acidic). 190 topsoil (0 - 10 cm) samples were collected from sloping croplands in Tongnan and Beibei Districts of Chongqing Municipality in China. Vis-NIR spectrum was measured and processed, and stepwise multiple linear regression (SMLR), partial least squares regression (PLSR), and back propagation neural network (BPNN) models were constructed to inform the soil texture. The clay fractions ranged from 4.40% to 27.12% while sand fractions ranged from 0.34% to 36.57%, hereby soil samples encompass three textural classes (i.e. silt, silt loam, and silty clay loam). For the original spectrum, the texture of calcareous and neutral purple soils was not significantly correlated with spectral reflectance and linear models (SMLR and PLSR) exhibited low prediction accuracy. The correlation coefficients and the goodness-of-fits between soil texture and the transformed spectra of all soil groups increased by continuum-removal (CR), first-order differential (R'), and second-order differential (R") transformations. Among them, the R" had the best performance in terms of improving the correlation coefficients and the goodness-of-fits. For the calcareous purple soil, the SMLR exceeds PLSR and BPNN with a higher coefficient of determination (R<sup>2</sup>) and the ratio of performance to inter-quartile distance (RPIQ) values and lower root mean square error of validation (RMSEV), but for the neutral and acidic purple soils, the PLSR model has a better prediction accuracy. In summary, the linear methods (SMLR and PLSR) are more reliable in estimating the texture of the three purple soil groups when using Vis-NIR spectroscopy inversion.展开更多
文摘Cowpea (Vigna unguiculata L. Walp) is a multi-purpose legume with high quality protein for human consumption and livestock. The objective of this work was to develop near-infrared spectroscopy (NIRS) prediction models to estimate protein content in cowpea. A total of 116 cowpea breeding lines with a wide range of protein contents (19.28 % to 32.04%) were selected to build the model using whole seed and ground seed samples. Partial least-squares discriminant analysis (PLS-DA) regression technique with different pre-treatments (derivatives, standard normal variate, and multiplicative scatter correction) were carried out to develop the protein prediction model. Results showed: 1) spectral plots of both the whole seed and ground seed showed higher spectral scatter at higher wavelengths (>1450 nm), 2) data pre-processing affects prediction accuracy for bot whole seed and ground seed samples, 3) prediction using ground seed samples (0.64 R<sup>2</sup> 0.85) is better than the whole seed (0.33 R<sup>2</sup> 0.78), and 4) the data pre-processing second derivative with standard normal variate has the best prediction (R<sup>2</sup>_whole seed = 0.78, R<sup>2</sup>_ground seed = 0.85). The results will be of interest in cowpea breeding programs aimed at improving total seed protein content.
基金support of the National Key Research and Development Program of China (Grant Numbers 2021YFB3201200 and 2021YFB3201202)the Shandong Province Natural Science Foundation (Grant Numbers ZR2021QB177 and ZR2022QB205).
文摘Human serum albumin(HSA)is the most abundant protein in plasma and plays an essential physiological role in the human body.Ethanol precipitation is the most widely used way to obtain HSA,and pH and ethanol are crucial factors affecting the process.In this study,infrared(IR)spectroscopy and near-infrared(NIR)spectroscopy in combination with chemometrics were used to investigate the changes in the secondary structure and hydration of HSA at acidic pH(5.6-3.2)and isoelectric pH when ethanol concentration was varied from 0%to 40%as a perturbation.IR spectroscopy combined with the two-dimensional correlation spectroscopy(2DCOS)analysis for acid pH system proved that the secondary structure of HSA changed significantly when pH was around 4.5.What's more,the IR spectroscopy and 2DCOS analysis showed different secondary structure forms under different ethanol concentrations at the isoelectric pH.For the hydration effect analysis,NIR spectroscopy combined with the McCabe-Fisher method and aquaphotomics showed that the free hydrogen-bonded water fluctuates dynamically,with ethanol at 0-20%enhancing the hydrogen-bonded water clusters,while weak hydrogen-bonded water clusters were formed when the ethanol concentration increased continuously from 20%to 30%.These measurements provide new insights into the structural changes and changes in the hydration behavior of HSA,revealing the dynamic process of protein purification,and providing a theoretical basis for the selection of HSA alcoholic precipitation process parameters,as well as for further studies of complex biological systems.
文摘Soil texture is an indicator of soil physical structure which delivers many ecological functions of soils such as thermal regime, plant growth, and soil quality. However, traditional methods for soil texture measurement are time-consuming and labor-intensive. This study attempts to explore an indirect method for rapid estimating the texture of three subgroups of purple soils (i.e. calcareous, neutral, and acidic). 190 topsoil (0 - 10 cm) samples were collected from sloping croplands in Tongnan and Beibei Districts of Chongqing Municipality in China. Vis-NIR spectrum was measured and processed, and stepwise multiple linear regression (SMLR), partial least squares regression (PLSR), and back propagation neural network (BPNN) models were constructed to inform the soil texture. The clay fractions ranged from 4.40% to 27.12% while sand fractions ranged from 0.34% to 36.57%, hereby soil samples encompass three textural classes (i.e. silt, silt loam, and silty clay loam). For the original spectrum, the texture of calcareous and neutral purple soils was not significantly correlated with spectral reflectance and linear models (SMLR and PLSR) exhibited low prediction accuracy. The correlation coefficients and the goodness-of-fits between soil texture and the transformed spectra of all soil groups increased by continuum-removal (CR), first-order differential (R'), and second-order differential (R") transformations. Among them, the R" had the best performance in terms of improving the correlation coefficients and the goodness-of-fits. For the calcareous purple soil, the SMLR exceeds PLSR and BPNN with a higher coefficient of determination (R<sup>2</sup>) and the ratio of performance to inter-quartile distance (RPIQ) values and lower root mean square error of validation (RMSEV), but for the neutral and acidic purple soils, the PLSR model has a better prediction accuracy. In summary, the linear methods (SMLR and PLSR) are more reliable in estimating the texture of the three purple soil groups when using Vis-NIR spectroscopy inversion.