NIST(National Institute of Standards and Technology) statistical test recognized as the most authoritative is widely used in verifying the randomness of binary sequences. The Non-overlapping Template Matching Test as ...NIST(National Institute of Standards and Technology) statistical test recognized as the most authoritative is widely used in verifying the randomness of binary sequences. The Non-overlapping Template Matching Test as the 7 th test of the NIST Test Suit is remarkably time consuming and the slow performance is one of the major hurdles in the testing process. In this paper, we present an efficient bit-parallel matching algorithm and segmented scan-based strategy for execution on Graphics Processing Unit(GPU) using NVIDIA Compute Unified Device Architecture(CUDA). Experimental results show the significant performance improvement of the parallelized Non-overlapping Template Matching Test, the running speed is 483 times faster than the original NIST implementation without attenuating the test result accuracy.展开更多
A new five-dimensional fractional-order laser chaotic system(FOLCS)is constructed by incorporating complex variables and fractional calculus into a Lorentz-Haken-type laser system.Dynamical behavior of the system,circ...A new five-dimensional fractional-order laser chaotic system(FOLCS)is constructed by incorporating complex variables and fractional calculus into a Lorentz-Haken-type laser system.Dynamical behavior of the system,circuit realization and application in pseudorandom number generators are studied.Many types of multi-stable states are discovered in the system.Interestingly,there are two types of state transition phenomena in the system,one is the chaotic state degenerates to a periodical state,and the other is the intermittent chaotic oscillation.In addition,the complexity of the system when two parameters change simultaneously is measured by the spectral entropy algorithm.Moreover,a digital circuit is design and the chaotic oscillation behaviors of the system are verified on this circuit.Finally,a pseudo-random sequence generator is designed using the FOLCS,and the statistical characteristics of the generated pseudo-random sequence are tested with the NIST-800-22.This study enriches the research on the dynamics and applications of FOLCS.展开更多
基金supported in part by Shanxi Scholarship Council of China(Grant No.2017-key-2)the Natural Science Foundation of Shanxi Province(Grant No.201801D121145)+1 种基金the Natural Science Foundation of China(NSFC)(Grant No.61731014,61705157,61927811)the Program for Guangdong Introducing Innovative and Entrepreneurial Teams。
文摘NIST(National Institute of Standards and Technology) statistical test recognized as the most authoritative is widely used in verifying the randomness of binary sequences. The Non-overlapping Template Matching Test as the 7 th test of the NIST Test Suit is remarkably time consuming and the slow performance is one of the major hurdles in the testing process. In this paper, we present an efficient bit-parallel matching algorithm and segmented scan-based strategy for execution on Graphics Processing Unit(GPU) using NVIDIA Compute Unified Device Architecture(CUDA). Experimental results show the significant performance improvement of the parallelized Non-overlapping Template Matching Test, the running speed is 483 times faster than the original NIST implementation without attenuating the test result accuracy.
基金Project supported by the National Natural Science Foundation of China(Grant No.62061014)the Natural Science Foundation of Liaoning Province,China(Grant No.2020-MS-274)。
文摘A new five-dimensional fractional-order laser chaotic system(FOLCS)is constructed by incorporating complex variables and fractional calculus into a Lorentz-Haken-type laser system.Dynamical behavior of the system,circuit realization and application in pseudorandom number generators are studied.Many types of multi-stable states are discovered in the system.Interestingly,there are two types of state transition phenomena in the system,one is the chaotic state degenerates to a periodical state,and the other is the intermittent chaotic oscillation.In addition,the complexity of the system when two parameters change simultaneously is measured by the spectral entropy algorithm.Moreover,a digital circuit is design and the chaotic oscillation behaviors of the system are verified on this circuit.Finally,a pseudo-random sequence generator is designed using the FOLCS,and the statistical characteristics of the generated pseudo-random sequence are tested with the NIST-800-22.This study enriches the research on the dynamics and applications of FOLCS.